IDEAS home Printed from https://ideas.repec.org/r/jae/japmet/v21y2006i3p387-407.html
   My bibliography  Save this item

Smoothed binary regression quantiles

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. G. De Novellis & M. Doretti & G. E. Montanari & M. G. Ranalli & N. Salvati, 2024. "Performance evaluation of nursing homes using finite mixtures of logistic models and M-quantile regression for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 753-781, July.
  2. Lara Delsalle & Oleksii Birulin, 2024. "Family-oriented versus career seekers: mixture regression separation," Empirical Economics, Springer, vol. 67(1), pages 313-335, July.
  3. Roger Klein & Francis Vella, 2009. "A semiparametric model for binary response and continuous outcomes under index heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 735-762.
  4. David M. Kaplan, 2013. "IDEAL Inference on Conditional Quantiles via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1316, Department of Economics, University of Missouri.
  5. Mohammad Arshad Rahman & Angela Vossmeyer, 2019. "Estimation and Applications of Quantile Regression for Binary Longitudinal Data," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part B, volume 40, pages 157-191, Emerald Group Publishing Limited.
  6. Helene Naegele, 2018. "Offset Credits in the EU ETS: A Quantile Estimation of Firm-Level Transaction Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 77-106, May.
  7. Naegele, Helene, 2018. "Offset Credits in the EU ETS: A Quantile Estimation of Firm-Level Transaction Costs," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 70(1), pages 77-106.
  8. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
  9. Helene Naegele, 2015. "Offset Credits in the EU ETS: A Quantile Estimation of Firm-Level Transaction Costs," Discussion Papers of DIW Berlin 1513, DIW Berlin, German Institute for Economic Research.
  10. Eliana Christou & Annabel Settle & Andreas Artemiou, 2021. "Nonlinear dimension reduction for conditional quantiles," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 937-956, December.
  11. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly, 2022. "Fast algorithms for the quantile regression process," Empirical Economics, Springer, vol. 62(1), pages 7-33, January.
  12. Florios, Kostas, 2018. "A hyperplanes intersection simulated annealing algorithm for maximum score estimation," Econometrics and Statistics, Elsevier, vol. 8(C), pages 37-55.
  13. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
  14. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
  15. Chiuling Lu & Ann Yang & Jui-Feng Huang, 2015. "Bankruptcy predictions for U.S. air carrier operations: a study of financial data," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 574-589, July.
  16. Li, Ming-Yuan Leon & Miu, Peter, 2010. "A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 818-833, September.
  17. Javier Alejo & Gabriel Montes-Rojas, 2021. "Quantile Regression under Limited Dependent Variable," Papers 2112.06822, arXiv.org.
  18. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
  19. Hoderlein, Stefan & Sherman, Robert, 2015. "Identification and estimation in a correlated random coefficients binary response model," Journal of Econometrics, Elsevier, vol. 188(1), pages 135-149.
  20. Oh, Man-Suk & Park, Eun Sug & So, Beong-Soo, 2016. "Bayesian variable selection in binary quantile regression," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 177-181.
  21. Mohit Batham & Soudeh Mirghasemi & Mohammad Arshad Rahman & Manini Ojha, 2021. "Modeling and Analysis of Discrete Response Data: Applications to Public Opinion on Marijuana Legalization in the United States," Papers 2109.10122, arXiv.org, revised May 2023.
  22. Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
  23. Yuzhi Cai, 2018. "A novel statistical approach to marketing campaigns," Working Papers 2018-21, Swansea University, School of Management.
  24. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
  25. Naegele, Helene, 2015. "Offset Credits in the EU Emissions Trading System : A Firm-Level Evaluation of Transaction Costs," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112817, Verein für Socialpolitik / German Economic Association.
  26. John D. Rice & Jeremy M. G. Taylor, 2016. "Locally Weighted Score Estimation for Quantile Classification in Binary Regression Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 333-350, October.
  27. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
  28. Yu-Yen Ku & Tze-Yu Yen, 2016. "Heterogeneous Effect of Financial Leverage on Corporate Performance: A Quantile Regression Analysis of Taiwanese Companies," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-33, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.