IDEAS home Printed from https://ideas.repec.org/r/jae/japmet/v10y1995i3p273-85.html
   My bibliography  Save this item

Maximum Likelihood Estimation of a Garch-Stable Model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Muneya Matsui & Akimichi Takemura, 2004. "Some Improvements in Numerical Evaluation of Symmetric Stable Density and its Derivatives," CIRJE F-Series CIRJE-F-292, CIRJE, Faculty of Economics, University of Tokyo.
  2. Curto, José Dias & Serrasqueiro, Pedro, 2022. "The impact of COVID-19 on S&P500 sector indices and FATANG stocks volatility: An expanded APARCH model," Finance Research Letters, Elsevier, vol. 46(PA).
  3. Pierdzioch, Christian, 2000. "Noise Traders? Trigger Rates, FX Options, and Smiles," Kiel Working Papers 970, Kiel Institute for the World Economy (IfW Kiel).
  4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
  5. Molina-Muñoz, Jesús & Mora-Valencia, Andrés & Perote, Javier, 2020. "Market-crash forecasting based on the dynamics of the alpha-stable distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  6. De Clerk, Luke & Savel’ev, Sergey, 2022. "AI algorithms for fitting GARCH parameters to empirical financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  7. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
  8. Prasad Bidarkota & J Huston Mcculloch, 2004. "Testing for persistence in stock returns with GARCH-stable shocks," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 256-265.
  9. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
  10. Wolff, Christian & Lehnert, Thorsten, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
  11. Djahoué Mangblé Gérald, 2018. "Estimating and Forecasting West Africa Stock Market Volatility Using Asymmetric GARCH Models," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-4.
  12. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
  13. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
  14. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  15. José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
  16. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
  17. Phillip A. Cartwright & Natalija Riabko, 2019. "Do spot food commodity and oil prices predict futures prices?," Review of Quantitative Finance and Accounting, Springer, vol. 53(1), pages 153-194, July.
  18. José Dias Curto & João Tomaz & José Castro Pinto, 2009. "A new approach to bad news effects on volatility: the multiple-sign-volume sensitive regime EGARCH model (MSV-EGARCH)," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 8(1), pages 23-36, April.
  19. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
  20. Khurshid M. Kiani & Prasad V. Bidarkota, 2004. "On Business Cycle Asymmetries in G7 Countries," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 333-351, July.
  21. KIANI, Khurshid M., 2007. "Determination Of Volatility And Mean Returns: An Evidence From An Emerging Stock Market," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(1), pages 103-118.
  22. J. Huston McCulloch & Prasad V. Bidarkota, 2003. "Signal Extraction can Generate Volatility Clusters," Computing in Economics and Finance 2003 59, Society for Computational Economics.
  23. J. Huston McCulloch & Prasad V. Bidarkota, 2002. "Signal Extraction Can Generate Volatility Clusters From IID Shocks," Working Papers 02-04, Ohio State University, Department of Economics.
  24. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
  25. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
  26. KIANI, Khurshid M., 2007. "Business Cycle Asymmetries In Stock Returns: Robust Evidence," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(2), pages 99-120.
  27. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
  28. Dong Han & Fugee Tsung & Yanting Li & Jinguo Xian, 2010. "Detection of changes in a random financial sequence with a stable distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(7), pages 1089-1111.
  29. Sio Chong U & Jacky So & Deng Ding & Lihong Liu, 2016. "An efficient Fourier expansion method for the calculation of value-at-risk: Contributions of extra-ordinary risks," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-27, March.
  30. Jonathan B. Hill, 2004. "Gaussian Tests of "Extremal White Noise" for Dependent, Heterogeneous, Heavy Tailed Time Series with an Application," Econometrics 0411014, University Library of Munich, Germany, revised 04 Nov 2005.
  31. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
  32. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
  33. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
  34. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
  35. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
  36. Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
  37. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
  38. Mateusz Pipień, 2005. "Dynamic Bayesian Inference in GARCH Processes with Skewed-t and Stable Conditional Distributions," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 15, pages 251-269, University of Lodz.
  39. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
  40. Francq, Christian & Meintanis, Simos, 2012. "Fourier--type estimation of the power garch model with stable--paretian innovations," MPRA Paper 41667, University Library of Munich, Germany.
  41. Richard Harris & C. Coskun Kucukozmen & Fatih Yilmaz, 2004. "Skewness in the conditional distribution of daily equity returns," Applied Financial Economics, Taylor & Francis Journals, vol. 14(3), pages 195-202.
  42. Bellini, Fabio & Bottolo, Leonardo, 2007. "Stationarity domains for [delta]-power Garch process with heavy tails," Statistics & Probability Letters, Elsevier, vol. 77(13), pages 1418-1427, July.
  43. Parrini, Alessandro, 2012. "Indirect estimation of GARCH models with alpha-stable innovations," MPRA Paper 38544, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.