IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v50y2009i2p311-321.html
   My bibliography  Save this article

Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions

Author

Listed:
  • José Curto
  • José Pinto
  • Gonçalo Tavares

Abstract

No abstract is available for this item.

Suggested Citation

  • José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
  • Handle: RePEc:spr:stpapr:v:50:y:2009:i:2:p:311-321
    DOI: 10.1007/s00362-007-0080-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-007-0080-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-007-0080-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shi-Miin & Brorsen, B Wade, 1995. "Maximum Likelihood Estimation of a Garch-Stable Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(3), pages 273-285, July-Sept.
    2. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    3. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
    4. C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
    5. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    6. Prasad Bidarkota & J Huston Mcculloch, 2004. "Testing for persistence in stock returns with GARCH-stable shocks," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 256-265.
    7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    8. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    9. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    10. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
    11. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    12. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    2. Christian M. Dahl & Emma M. Iglesias, 2021. "Asymptotic normality of the MLE in the level-effect ARCH model," Statistical Papers, Springer, vol. 62(1), pages 117-135, February.
    3. Peter Bossaerts & Shijie Huang & Nitin Yadav, 2020. "Exploiting Distributional Temporal Difference Learning to Deal with Tail Risk," Risks, MDPI, vol. 8(4), pages 1-20, October.
    4. Davies, Laurie & Höhenrieder, Christian & Krämer, Walter, 2012. "Recursive computation of piecewise constant volatilities," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3623-3631.
    5. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    6. Xiaochun Liu, 2017. "An integrated macro‐financial risk‐based approach to the stressed capital requirement," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 86-98, September.
    7. Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
    8. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    9. Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018. "Testing for leverage effects in the returns of US equities," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
    10. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    11. Ramona Serrano Bautista & Leovardo Mata Mata, 2018. "Estimación del VaR mediante un modelo condicional multivariado bajo la hipótesis α-estable sub-Gaussiana. (A conditional approach to VaR with multivariate α-stable sub-Gaussian distributions)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 43-76, May.
    12. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    13. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2017. "Testing for Leverage Effects in the Returns of US Equities," Post-Print halshs-00973922, HAL.
    14. Surya Teja Eada & Vladimir Pozdnyakov & Jun Yan, 2025. "Discretely observed Brownian motion governed by telegraph signal process: Estimation and application to finance," Statistical Inference for Stochastic Processes, Springer, vol. 28(1), pages 1-17, April.
    15. N. Alemohammad & S. Rezakhah & S. H. Alizadeh, 2020. "Markov switching asymmetric GARCH model: stability and forecasting," Statistical Papers, Springer, vol. 61(3), pages 1309-1333, June.
    16. Matthias Bauer & Martin Zenker, 2012. "Market Discipline Under A Politicised Multilateral Fiscal Rule - Lessons from the Stability and Growth Pact Debate," Global Financial Markets Working Paper Series 2012-35, Friedrich-Schiller-University Jena.
    17. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effect in Financial Returns," Documents de travail du Centre d'Economie de la Sorbonne 14022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    2. José Dias Curto & João Tomaz & José Castro Pinto, 2009. "A new approach to bad news effects on volatility: the multiple-sign-volume sensitive regime EGARCH model (MSV-EGARCH)," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 8(1), pages 23-36, April.
    3. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    4. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    5. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
    6. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    7. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    8. repec:awi:wpaper:0472 is not listed on IDEAS
    9. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    10. Brianna Cain & Ralf Zurbruegg, 2010. "Can switching between risk measures lead to better portfolio optimization?," Journal of Asset Management, Palgrave Macmillan, vol. 10(6), pages 358-369, February.
    11. Bentes, Sónia R., 2021. "How COVID-19 has affected stock market persistence? Evidence from the G7’s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    13. de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
    14. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    15. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    16. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    17. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
    18. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
    19. Amira Akl Ahmed & Doaa Akl Ahmed, 2016. "Modelling Conditional Volatility and Downside Risk for Istanbul Stock Exchange," Working Papers 1028, Economic Research Forum, revised Jul 2016.
    20. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    21. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:50:y:2009:i:2:p:311-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.