IDEAS home Printed from https://ideas.repec.org/a/eaa/ijaeqs/v4y2007i1_7.html
   My bibliography  Save this article

Determination Of Volatility And Mean Returns: An Evidence From An Emerging Stock Market

Author

Listed:
  • KIANI, Khurshid M.

Abstract

In the present research we work with excess returns for an emerging stock market i.e. Jamaican Stock Price Index for the determination of volatility persistence and persistence in the mean returns series. We model excess returns in this stock market using state space or unobserved component models, which is a signal extraction approach. Our model encompass stable distributions to account for fat tails and GARCH-like effects to account for time varying volatility that may be present in the series. The study results that are obtained using the most general as well as the restricted versions of the state space models reveal statistically significant evidence of volatility persistence in the excess returns series. Further, there exist persistent predictable signals in returns series at 5 percent level of significance, and the value of an efficiently estimated excess returns series is percent per month (percent per annum). Further, the series encompass a stable characteristic exponent of showing a non-normal behavior in this market.

Suggested Citation

  • KIANI, Khurshid M., 2007. "Determination Of Volatility And Mean Returns: An Evidence From An Emerging Stock Market," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(1), pages 103-118.
  • Handle: RePEc:eaa:ijaeqs:v:4:y2007:i:1_7
    as

    Download full text from publisher

    File URL: http://www.usc.es/economet/reviews/ijaeqs417.pdf
    Download Restriction: No
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    2. Liu, Shi-Miin & Brorsen, B Wade, 1995. "Maximum Likelihood Estimation of a Garch-Stable Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(3), pages 273-285, July-Sept.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    5. Diebold & Lopez, "undated". "Modeling Volatility Dynamics," Home Pages _062, University of Pennsylvania.
    6. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    7. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    8. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    9. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    10. Xu, Yexiao, 2004. "Small levels of predictability and large economic gains," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 247-275, March.
    11. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    12. Ghose, Devajyoti & Kroner, Kenneth F., 1995. "The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 225-251, September.
    13. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    14. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    15. Summers, Lawrence H, 1986. "Does the Stock Market Rationally Reflect Fundamental Values?," Journal of Finance, American Finance Association, vol. 41(3), pages 591-601, July.
    16. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    17. Conrad, Jennifer & Kaul, Gautam, 1988. "Time-Variation in Expected Returns," The Journal of Business, University of Chicago Press, vol. 61(4), pages 409-425, October.
    18. Cecchetti, Stephen G & Lam, Pok-sang & Mark, Nelson C, 1990. "Mean Reversion in Equilibrium Asset Prices," American Economic Review, American Economic Association, vol. 80(3), pages 398-418, June.
    19. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    20. Prasad Bidarkota & J Huston Mcculloch, 2004. "Testing for persistence in stock returns with GARCH-stable shocks," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 256-265.
    21. Prasad V. Bidarkota & J. Huston McCulloch, 1998. "Optimal univariate inflation forecasting with symmetric stable shocks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(6), pages 659-670.
    22. Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
    23. Akgiray, Vedat & Booth, G Geoffrey, 1988. "The Stable-Law Model of Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 51-57, January.
    24. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    25. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    26. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    27. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasad Bidarkota & J Huston Mcculloch, 2004. "Testing for persistence in stock returns with GARCH-stable shocks," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 256-265.
    2. Khurshid M. Kiani, 2006. "Predictability in Stock Returns in an Emerging Market: Evidence from KSE 100 Stock Price Index," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 45(3), pages 369-381.
    3. Khurshid M. Kiani, 2016. "On Modelling and Forecasting Predictable Components in European Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 487-502, October.
    4. J. Huston McCulloch & Prasad V. Bidarkota, 2003. "Signal Extraction can Generate Volatility Clusters," Computing in Economics and Finance 2003 59, Society for Computational Economics.
    5. J. Huston McCulloch & Prasad V. Bidarkota, 2002. "Signal Extraction Can Generate Volatility Clusters From IID Shocks," Working Papers 02-04, Ohio State University, Department of Economics.
    6. Kiani, Khurshid M., 2011. "Relationship between portfolio diversification and value at risk: Empirical evidence," Emerging Markets Review, Elsevier, vol. 12(4), pages 443-459.
    7. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    8. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    9. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    10. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    11. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    12. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
    13. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    14. Khurshid Kiani, 2009. "Inflation in Transition Economies: An Empirical Analysis," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 16(1), pages 34-46, May.
    15. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    16. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    18. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    19. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    20. KIANI, Khurshid M., 2007. "Business Cycle Asymmetries In Stock Returns: Robust Evidence," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(2), pages 99-120.

    More about this item

    Keywords

    stock return predictability; unobserved components; fat tails; stable distributions;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eaa:ijaeqs:v:4:y2007:i:1_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: M. Carmen Guisan (email available below). General contact details of provider: http://www.usc.es/economet/eaa.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.