AI algorithms for fitting GARCH parameters to empirical financial data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2022.127869
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter Boswijk, H. & van der Weide, Roy, 2011. "Method of moments estimation of GO-GARCH models," Journal of Econometrics, Elsevier, vol. 163(1), pages 118-126, July.
- Liu, Shi-Miin & Brorsen, B Wade, 1995. "Maximum Likelihood Estimation of a Garch-Stable Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(3), pages 273-285, July-Sept.
- Emmanuel Jurczenko & Bertrand Maillet & Bogdan Negrea, 2004.
"A note on skewness and kurtosis adjusted option pricing models under the Martingale restriction,"
Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 479-488.
- Bertrand Maillet & Bogdan Négréa, 2004. "A Note on Skewness and Kurtosis Adjusted Option Pricing Models under the Martingale Restriction," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308980, HAL.
- Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
- repec:bla:jfinan:v:44:y:1989:i:5:p:1177-89 is not listed on IDEAS
- Constantinides, A. & Savel’ev, S.E., 2013. "Modelling price dynamics: A hybrid truncated Lévy Flight–GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2072-2078.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Bertrand Maillet & Bogdan Négréa, 2004. "A Note on Skewness and Kurtosis Adjusted Option Pricing Models under the Martingale Restriction," Post-Print hal-00308980, HAL.
- Pokhilchuk, K.A. & Savel’ev, S.E., 2016. "On the choice of GARCH parameters for efficient modelling of real stock price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 248-253.
- Keiichi Tanaka & Takeshi Yamada & Toshiaki Watanabe, 2010. "Applications of Gram-Charlier expansion and bond moments for pricing of interest rates and credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 645-662.
- Francq, Christian & Zakoian, Jean-Michel, 2007. "Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1265-1284, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
- Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
- Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
- Meitz, Mika & Saikkonen, Pentti, 2011.
"Parameter Estimation In Nonlinear Ar–Garch Models,"
Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," CREATES Research Papers 2008-30, Department of Economics and Business Economics, Aarhus University.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
- Mika Meitz & Pentti Saikkonen, 2010. "Parameter estimation in nonlinear AR–GARCH models," Koç University-TUSIAD Economic Research Forum Working Papers 1002, Koc University-TUSIAD Economic Research Forum.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter Estimation in Nonlinear AR-GARCH Models," Economics Working Papers ECO2008/25, European University Institute.
- El Jebari, Ouael & Hakmaoui, Abdelati, 2018. "GARCH Family Models vs EWMA: Which is the Best Model to Forecast Volatility of the Moroccan Stock Exchange Market? || Modelos de la familia GARCH vs EWMA: ¿cuál es el mejor modelo para pronosticar la ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 237-249, Diciembre.
- Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
- Diongue, Abdou Kâ & Guégan, Dominique, 2007.
"The stationary seasonal hyperbolic asymmetric power ARCH model,"
Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
- Abdou Kâ Diongue & Dominique Guegan, 2007. "The Stationary Seasonal Hyperbolic Asymmetric Power ARCH model," Post-Print halshs-00179275, HAL.
- Abdou Kâ Diongue & Dominique Guegan, 2007. "The Stationary Seasonal Hyperbolic Asymmetric Power ARCH model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00179275, HAL.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005.
"Volatility forecasting,"
CFS Working Paper Series
2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
- Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
- Chuffart Thomas & Flachaire Emmanuel & Péguin-Feissolle Anne, 2018.
"Testing for misspecification in the short-run component of GARCH-type models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-17, December.
- Thomas Chuffart & Emmanuel Flachaire & Anne Péguin-Feissolle, 2017. "Testing for misspecification in the short-run component of GARCH-type models," Post-Print hal-03157205, HAL.
- Thomas Chuffart & Emmanuel Flachaire & Anne Peguin-Feissolle, 2018. "Testing for misspecification in the short-run component of GARCH-type models," Post-Print hal-02083772, HAL.
- Massimiliano Cecconi & Giampiero M. Gallo & Marco J. Lombardi, 2002. "GARCH-based Volatility Forecasts for Market Volatility Indices," Econometrics Working Papers Archive wp2002_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Charles, Amélie, 2010.
"The day-of-the-week effects on the volatility: The role of the asymmetry,"
European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
- Amélie Charles, 2010. "The day-of-the week effects on the volatility: The role of the asymmetry," Post-Print hal-00771136, HAL.
- He, Changli & Teräsvirta, Timo, 1999. "Higher-order dependence in the general Power ARCH process and a special case," SSE/EFI Working Paper Series in Economics and Finance 315, Stockholm School of Economics.
- Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
- Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.
- E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
- Rituparna Sen & Pulkit Mehrotra, 2016. "Modeling Jumps and Volatility of the Indian Stock Market Using High-Frequency Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(1), pages 137-150, June.
- Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006.
"Multivariate GARCH models: a survey,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
- Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," LIDAM Discussion Papers CORE 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, 2006. "Multivariate GARCH models: a survey," LIDAM Reprints CORE 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018.
"Volatility forecasting across tanker freight rates: The role of oil price shocks,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
- Konstantinos Gavriilidis & Dimos S. Kambouroudis & Katerina Tsakou & Dimitris S. Tsouknidis, 2018. "Volatility forecasting across tanker freight rates: the role of oil price shocks," Working Papers 2018-27, Swansea University, School of Management.
More about this item
Keywords
Empirical data; Artificial Neural Networks; Heteroskedasticity; Autocovariance; GARCH;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005611. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.