IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v42y1994i6p1025-1041.html
   My bibliography  Save this item

The Total Tardiness Problem: Review and Extensions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
  2. Choi, Seong-Woo & Kim, Yeong-Dae, 2009. "Minimizing total tardiness on a two-machine re-entrant flowshop," European Journal of Operational Research, Elsevier, vol. 199(2), pages 375-384, December.
  3. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
  4. Lee, Ik Sun & Sung, C.S., 2008. "Minimizing due date related measures for a single machine scheduling problem with outsourcing allowed," European Journal of Operational Research, Elsevier, vol. 186(3), pages 931-952, May.
  5. Zhou, Hong & Cheung, Waiman & Leung, Lawrence C., 2009. "Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm," European Journal of Operational Research, Elsevier, vol. 194(3), pages 637-649, May.
  6. Bilge, Umit & Kurtulan, Mujde & Kirac, Furkan, 2007. "A tabu search algorithm for the single machine total weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1423-1435, February.
  7. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.
  8. Gupta, Skylab R. & Smith, Jeffrey S., 2006. "Algorithms for single machine total tardiness scheduling with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 175(2), pages 722-739, December.
  9. Sesh Murthy & Rama Akkiraju & Richard Goodwin & Pinar Keskinocak & John Rachlin & Frederick Wu & James Yeh & Robert Fuhrer & Santhosh Kumaran & Alok Aggarwal & Martin Sturzenbecker & Ranga Jayaraman &, 1999. "Cooperative Multiobjective Decision Support for the Paper Industry," Interfaces, INFORMS, vol. 29(5), pages 5-30, October.
  10. Tanaka, Shunji & Araki, Mituhiko, 2008. "A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines," International Journal of Production Economics, Elsevier, vol. 113(1), pages 446-458, May.
  11. Tirupati Devanath & Peeyush Mehta & Chandra, Pankaj, 2004. "Permutation Flowshop Scheduling with Earliness and Tardiness Penalties," IIMA Working Papers WP2004-07-06, Indian Institute of Management Ahmedabad, Research and Publication Department.
  12. Akturk, M. Selim & Gorgulu, Elif, 1999. "Match-up scheduling under a machine breakdown," European Journal of Operational Research, Elsevier, vol. 112(1), pages 81-97, January.
  13. Raúl Mencía & Carlos Mencía, 2021. "One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
  14. S H Yoon & I S Lee, 2011. "New constructive heuristics for the total weighted tardiness problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 232-237, January.
  15. André Scholz & Daniel Schubert & Gerhard Wäscher, 2016. "Order picking with multiple pickers and due dates – Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems," FEMM Working Papers 160005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
  16. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
  17. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
  18. Gio Kao & Edward Sewell & Sheldon Jacobson & Shane Hall, 2012. "New dominance rules and exploration strategies for the 1|r i |∑U i scheduling problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1253-1274, April.
  19. Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.
  20. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2000. "Sequencing jobs on a single machine: A neural network approach," European Journal of Operational Research, Elsevier, vol. 126(3), pages 474-490, November.
  21. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2006. "A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 174(1), pages 1-10, October.
  22. S.S. Panwalkar & Christos Koulamas, 2015. "Scheduling research and the first decade of NRLQ: A historical perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 335-344, June.
  23. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
  24. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
  25. Yu, Tae-Sun & Pinedo, Michael, 2020. "Flow shops with reentry: Reversibility properties and makespan optimal schedules," European Journal of Operational Research, Elsevier, vol. 282(2), pages 478-490.
  26. Koulamas, C., 1997. "Polynomially solvable total tardiness problems: Review and extensions," Omega, Elsevier, vol. 25(2), pages 235-239, April.
  27. Tian, Z. J. & Ng, C. T. & Cheng, T. C. E., 2005. "On the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 843-846, September.
  28. Franca, Paulo M. & Mendes, Alexandre & Moscato, Pablo, 2001. "A memetic algorithm for the total tardiness single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(1), pages 224-242, July.
  29. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
  30. Chia-Shin Chung & James Flynn & Walter Rom & Piotr Staliński, 2012. "A Genetic Algorithm to Minimize the Total Tardiness for M-Machine Permutation Flowshop Problems," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 26-43.
  31. Charnsirisakskul, Kasarin & Griffin, Paul M. & Keskinocak, Pinar, 2006. "Pricing and scheduling decisions with leadtime flexibility," European Journal of Operational Research, Elsevier, vol. 171(1), pages 153-169, May.
  32. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
  33. Armentano, Vinicius Amaral & de Franca Filho, Moacir Felizardo, 2007. "Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach," European Journal of Operational Research, Elsevier, vol. 183(1), pages 100-114, November.
  34. Alidaee, Bahram & Gopalan, Suresh, 1997. "A note on the equivalence of two heuristics to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 96(3), pages 514-517, February.
  35. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
  36. Pinar Keskinocak & Frederick Wu & Richard Goodwin & Sesh Murthy & Rama Akkiraju & Santhosh Kumaran & Annap Derebail, 2002. "Scheduling Solutions for the Paper Industry," Operations Research, INFORMS, vol. 50(2), pages 249-259, April.
  37. Jamili, Negin & van den Berg, Pieter L. & de Koster, René, 2022. "Quantifying the impact of sharing resources in a collaborative warehouse," European Journal of Operational Research, Elsevier, vol. 302(2), pages 518-529.
  38. Patrick H. Liu, 2000. "A comparative study of three tool replacement/operation sequencing strategies in a flexible manufacturing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(6), pages 479-499, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.