IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v42y1994i6p1025-1041.html
   My bibliography  Save this item

The Total Tardiness Problem: Review and Extensions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
  2. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
  3. Akturk, M. Selim & Gorgulu, Elif, 1999. "Match-up scheduling under a machine breakdown," European Journal of Operational Research, Elsevier, vol. 112(1), pages 81-97, January.
  4. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2000. "Sequencing jobs on a single machine: A neural network approach," European Journal of Operational Research, Elsevier, vol. 126(3), pages 474-490, November.
  5. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2006. "A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 174(1), pages 1-10, October.
  6. Choi, Seong-Woo & Kim, Yeong-Dae, 2009. "Minimizing total tardiness on a two-machine re-entrant flowshop," European Journal of Operational Research, Elsevier, vol. 199(2), pages 375-384, December.
  7. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
  8. Lee, Ik Sun & Sung, C.S., 2008. "Minimizing due date related measures for a single machine scheduling problem with outsourcing allowed," European Journal of Operational Research, Elsevier, vol. 186(3), pages 931-952, May.
  9. S.S. Panwalkar & Christos Koulamas, 2015. "Scheduling research and the first decade of NRLQ: A historical perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 335-344, June.
  10. Raúl Mencía & Carlos Mencía, 2021. "One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
  11. S H Yoon & I S Lee, 2011. "New constructive heuristics for the total weighted tardiness problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 232-237, January.
  12. André Scholz & Daniel Schubert & Gerhard Wäscher, 2016. "Order picking with multiple pickers and due dates – Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems," FEMM Working Papers 160005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
  13. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
  14. Armentano, Vinicius Amaral & de Franca Filho, Moacir Felizardo, 2007. "Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach," European Journal of Operational Research, Elsevier, vol. 183(1), pages 100-114, November.
  15. Zhou, Hong & Cheung, Waiman & Leung, Lawrence C., 2009. "Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm," European Journal of Operational Research, Elsevier, vol. 194(3), pages 637-649, May.
  16. Bilge, Umit & Kurtulan, Mujde & Kirac, Furkan, 2007. "A tabu search algorithm for the single machine total weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1423-1435, February.
  17. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
  18. Yu, Tae-Sun & Pinedo, Michael, 2020. "Flow shops with reentry: Reversibility properties and makespan optimal schedules," European Journal of Operational Research, Elsevier, vol. 282(2), pages 478-490.
  19. Alidaee, Bahram & Gopalan, Suresh, 1997. "A note on the equivalence of two heuristics to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 96(3), pages 514-517, February.
  20. Koulamas, C., 1997. "Polynomially solvable total tardiness problems: Review and extensions," Omega, Elsevier, vol. 25(2), pages 235-239, April.
  21. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
  22. Tian, Z. J. & Ng, C. T. & Cheng, T. C. E., 2005. "On the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 843-846, September.
  23. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
  24. Franca, Paulo M. & Mendes, Alexandre & Moscato, Pablo, 2001. "A memetic algorithm for the total tardiness single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(1), pages 224-242, July.
  25. Pinar Keskinocak & Frederick Wu & Richard Goodwin & Sesh Murthy & Rama Akkiraju & Santhosh Kumaran & Annap Derebail, 2002. "Scheduling Solutions for the Paper Industry," Operations Research, INFORMS, vol. 50(2), pages 249-259, April.
  26. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
  27. Jamili, Negin & van den Berg, Pieter L. & de Koster, René, 2022. "Quantifying the impact of sharing resources in a collaborative warehouse," European Journal of Operational Research, Elsevier, vol. 302(2), pages 518-529.
  28. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.
  29. Gupta, Skylab R. & Smith, Jeffrey S., 2006. "Algorithms for single machine total tardiness scheduling with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 175(2), pages 722-739, December.
  30. Sesh Murthy & Rama Akkiraju & Richard Goodwin & Pinar Keskinocak & John Rachlin & Frederick Wu & James Yeh & Robert Fuhrer & Santhosh Kumaran & Alok Aggarwal & Martin Sturzenbecker & Ranga Jayaraman &, 1999. "Cooperative Multiobjective Decision Support for the Paper Industry," Interfaces, INFORMS, vol. 29(5), pages 5-30, October.
  31. Gio Kao & Edward Sewell & Sheldon Jacobson & Shane Hall, 2012. "New dominance rules and exploration strategies for the 1|r i |∑U i scheduling problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1253-1274, April.
  32. Patrick H. Liu, 2000. "A comparative study of three tool replacement/operation sequencing strategies in a flexible manufacturing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(6), pages 479-499, September.
  33. Tanaka, Shunji & Araki, Mituhiko, 2008. "A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines," International Journal of Production Economics, Elsevier, vol. 113(1), pages 446-458, May.
  34. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
  35. Tirupati Devanath & Peeyush Mehta & Chandra, Pankaj, 2004. "Permutation Flowshop Scheduling with Earliness and Tardiness Penalties," IIMA Working Papers WP2004-07-06, Indian Institute of Management Ahmedabad, Research and Publication Department.
  36. Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.
  37. Chia-Shin Chung & James Flynn & Walter Rom & Piotr Staliński, 2012. "A Genetic Algorithm to Minimize the Total Tardiness for M-Machine Permutation Flowshop Problems," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 26-43.
  38. Charnsirisakskul, Kasarin & Griffin, Paul M. & Keskinocak, Pinar, 2006. "Pricing and scheduling decisions with leadtime flexibility," European Journal of Operational Research, Elsevier, vol. 171(1), pages 153-169, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.