IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v26y1978i2p282-304.html
   My bibliography  Save this item

The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
  2. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
  3. Gong, Linguo & Tang, Kwei, 1997. "Monitoring machine operations using on-line sensors," European Journal of Operational Research, Elsevier, vol. 96(3), pages 479-492, February.
  4. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
  5. Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
  6. Williams, Byron K., 2011. "Resolving structural uncertainty in natural resources management using POMDP approaches," Ecological Modelling, Elsevier, vol. 222(5), pages 1092-1102.
  7. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  8. V. Makis & X. Jiang, 2003. "Optimal Replacement Under Partial Observations," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 382-394, May.
  9. Hao Zhang, 2022. "Analytical Solution to a Discrete-Time Model for Dynamic Learning and Decision Making," Management Science, INFORMS, vol. 68(8), pages 5924-5957, August.
  10. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.
  11. Abhijit Gosavi, 2009. "Reinforcement Learning: A Tutorial Survey and Recent Advances," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 178-192, May.
  12. White, Chelsea C. & Cheong, Taesu, 2012. "In-transit perishable product inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 310-330.
  13. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
  14. Yanling Chang & Alan Erera & Chelsea White, 2015. "Value of information for a leader–follower partially observed Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 129-153, December.
  15. Satya S. Malladi & Alan L. Erera & Chelsea C. White, 2023. "Inventory control with modulated demand and a partially observed modulation process," Annals of Operations Research, Springer, vol. 321(1), pages 343-369, February.
  16. Eugene A. Feinberg & Pavlo O. Kasyanov & Michael Z. Zgurovsky, 2016. "Partially Observable Total-Cost Markov Decision Processes with Weakly Continuous Transition Probabilities," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 656-681, May.
  17. Satya S. Malladi & Alan L. Erera & Chelsea C. White, 2021. "Managing mobile production-inventory systems influenced by a modulation process," Annals of Operations Research, Springer, vol. 304(1), pages 299-330, September.
  18. Compare, Michele & Baraldi, Piero & Marelli, Paolo & Zio, Enrico, 2020. "Partially observable Markov decision processes for optimal operations of gas transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  19. Keqin Liu & Richard Weber & Chengzhong Zhang, 2024. "Low-complexity algorithm for restless bandits with imperfect observations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(2), pages 467-508, October.
  20. Daming Lin & Viliam Makis, 2006. "On‐line parameter estimation for a partially observable system subject to random failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 477-483, August.
  21. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
  22. Armando Z. Milioni & Stanley R. Pliska, 1988. "Optimal inspection under semi‐markovian deterioration: Basic results," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 373-392, October.
  23. Zhang, Mimi, 2020. "A heuristic policy for maintaining multiple multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  24. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  25. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
  26. Memarzadeh, Milad & Pozzi, Matteo & Kolter, J. Zico, 2016. "Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 159-169.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.