IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v23y1975i3p434-451.html
   My bibliography  Save this item

Surrogate Constraint Duality in Mathematical Programming

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hadi Bidhandi, 2006. "A new approach based on the surrogating method in the project time compression problems," Annals of Operations Research, Springer, vol. 143(1), pages 237-250, March.
  2. Galvao, Roberto D. & Gonzalo Acosta Espejo, Luis & Boffey, Brian, 2000. "A comparison of Lagrangean and surrogate relaxations for the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 124(2), pages 377-389, July.
  3. Joseph, Anito & Gass, Saul I. & Bryson, Noel, 1998. "An objective hyperplane search procedure for solving the general all-integer linear programming (ILP) problem," European Journal of Operational Research, Elsevier, vol. 104(3), pages 601-614, February.
  4. Farhad Ghassemi Tari, 2016. "A Hybrid Dynamic Programming for Solving Fixed Cost Transportation with Discounted Mechanism," Journal of Optimization, Hindawi, vol. 2016, pages 1-9, February.
  5. Djerdjour, Mohamed, 1997. "An enumerative algorithm framework for a class of nonlinear integer programming problems," European Journal of Operational Research, Elsevier, vol. 101(1), pages 104-121, August.
  6. D. Quadri & E. Soutif & P. Tolla, 2009. "Exact solution method to solve large scale integer quadratic multidimensional knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 157-167, February.
  7. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
  8. Nieuwenhuizen, Thorsten, 1999. "Johri's general dual, the Lagrangian dual, and the surrogate dual," European Journal of Operational Research, Elsevier, vol. 117(1), pages 183-196, August.
  9. Selcuk Karabati & Panagiotis Kouvelis & Gang Yu, 2001. "A Min-Max-Sum Resource Allocation Problem and Its Applications," Operations Research, INFORMS, vol. 49(6), pages 913-922, December.
  10. Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.
  11. Sanjiv Sarin & Mark H. Karwan & Ronald L. Rardin, 1987. "A new surrogate dual multiplier search procedure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 431-450, June.
  12. Ablanedo-Rosas, José H. & Rego, César, 2010. "Surrogate constraint normalization for the set covering problem," European Journal of Operational Research, Elsevier, vol. 205(3), pages 540-551, September.
  13. Li, Han-Lin & Fang, Shu-Cherng & Huang, Yao-Huei & Nie, Tiantian, 2016. "An enhanced logarithmic method for signomial programming with discrete variables," European Journal of Operational Research, Elsevier, vol. 255(3), pages 922-934.
  14. S.-L. Kim & S. Kim, 1998. "Exact Algorithm for the Surrogate Dual of an Integer Programming Problem: Subgradient Method Approach," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 363-375, February.
  15. Silvano Martello & Paolo Toth, 2003. "An Exact Algorithm for the Two-Constraint 0--1 Knapsack Problem," Operations Research, INFORMS, vol. 51(5), pages 826-835, October.
  16. Siddhartha Syam & Bala Shetty, 1998. "Coordinated replenishments from multiple suppliers with price discounts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(6), pages 579-598, September.
  17. Y.M. Ermoliev & A.V. Kryazhimskii & A. Ruszczynski, 1995. "Constraint Aggregation Principle in Convex Optimization," Working Papers wp95015, International Institute for Applied Systems Analysis.
  18. Mohammadi Bidhandi, Hadi & Mohd. Yusuff, Rosnah & Megat Ahmad, Megat Mohamad Hamdan & Abu Bakar, Mohd Rizam, 2009. "Development of a new approach for deterministic supply chain network design," European Journal of Operational Research, Elsevier, vol. 198(1), pages 121-128, October.
  19. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
  20. Paola Cappanera & Marco Trubian, 2005. "A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 82-98, February.
  21. George Vairaktarakis & Janice Kim Winch, 1999. "Worker Cross-Training in Paced Assembly Lines," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 112-131.
  22. Cerqueus, Audrey & Przybylski, Anthony & Gandibleux, Xavier, 2015. "Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems," European Journal of Operational Research, Elsevier, vol. 244(2), pages 417-433.
  23. Laureano Escudero & M. Martínez & M. Ortuño, 1999. "On surrogating 0–1 knapsack constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 155-161, June.
  24. Saïd Hanafi & Christophe Wilbaut, 2011. "Improved convergent heuristics for the 0-1 multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 183(1), pages 125-142, March.
  25. Glover, Fred, 2013. "Advanced greedy algorithms and surrogate constraint methods for linear and quadratic knapsack and covering problems," European Journal of Operational Research, Elsevier, vol. 230(2), pages 212-225.
  26. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
  27. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
  28. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
  29. M. A. Venkataramana & John J. Dinkel & John Mote, 1991. "Vector processing approach to constrained network problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 71-85, February.
  30. Vairaktarakis, George L. & Cai, Xiaoqiang & Lee, Chung-Yee, 2002. "Workforce planning in synchronous production systems," European Journal of Operational Research, Elsevier, vol. 136(3), pages 551-572, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.