IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v13y1965i3p400-412.html
   My bibliography  Save this item

Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ishibuchi, Hisao & Misaki, Shinta & Tanaka, Hideo, 1995. "Modified simulated annealing algorithms for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 81(2), pages 388-398, March.
  2. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
  3. Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
  4. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
  5. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
  6. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
  7. Detienne, Boris & Sadykov, Ruslan & Tanaka, Shunji, 2016. "The two-machine flowshop total completion time problem: Branch-and-bound algorithms based on network-flow formulation," European Journal of Operational Research, Elsevier, vol. 252(3), pages 750-760.
  8. Yen-Shing Tsai & Bertrand M. T. Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
  9. Sun, Xi & Morizawa, Kazuko & Nagasawa, Hiroyuki, 2003. "Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 146(3), pages 498-516, May.
  10. N Madhushini & C Rajendran & Y Deepa, 2009. "Branch-and-bound algorithms for scheduling in permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted f," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 991-1004, July.
  11. J. A. Hoogeveen & T. Kawaguchi, 1999. "Minimizing Total Completion Time in a Two-Machine Flowshop: Analysis of Special Cases," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 887-910, November.
  12. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
  13. Baptiste, Pierre, 2006. "Stochastic algorithms: Using the worst to reach the best," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 41-51, February.
  14. Fondrevelle, J. & Oulamara, A. & Portmann, M.-C., 2008. "Permutation flowshop scheduling problems with time lags to minimize the weighted sum of machine completion times," International Journal of Production Economics, Elsevier, vol. 112(1), pages 168-176, March.
  15. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
  16. Gowrishankar, K. & Rajendran, Chandrasekharan & Srinivasan, G., 2001. "Flow shop scheduling algorithms for minimizing the completion time variance and the sum of squares of completion time deviations from a common due date," European Journal of Operational Research, Elsevier, vol. 132(3), pages 643-665, August.
  17. Zhenyou Wang & Cai-Min Wei & Yuan-Yuan Lu, 2016. "Permutation Flow Shop Problem with Shortening Job Processing Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-14, August.
  18. Yen-Shing Tsai & Bertrand Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
  19. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
  20. Lei Shang & Christophe Lenté & Mathieu Liedloff & Vincent T’Kindt, 2018. "Exact exponential algorithms for 3-machine flowshop scheduling problems," Journal of Scheduling, Springer, vol. 21(2), pages 227-233, April.
  21. Kim, Yeong-Dae, 1995. "Minimizing total tardiness in permutation flowshops," European Journal of Operational Research, Elsevier, vol. 85(3), pages 541-555, September.
  22. Mohamed Ali Rakrouki & Anis Kooli & Sabrine Chalghoumi & Talel Ladhari, 2020. "A branch-and-bound algorithm for the two-machine total completion time flowshop problem subject to release dates," Operational Research, Springer, vol. 20(1), pages 21-35, March.
  23. Della Croce, F. & Ghirardi, M. & Tadei, R., 2002. "An improved branch-and-bound algorithm for the two machine total completion time flow shop problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 293-301, June.
  24. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
  25. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
  26. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
  27. Sung, Chang Sup & Kim, Young Hwan & Yoon, Sang Hum, 2000. "A problem reduction and decomposition approach for scheduling for a flowshop of batch processing machines," European Journal of Operational Research, Elsevier, vol. 121(1), pages 179-192, February.
  28. Tseng, Fan T. & Stafford, Edward F. & Gupta, Jatinder N. D., 2004. "An empirical analysis of integer programming formulations for the permutation flowshop," Omega, Elsevier, vol. 32(4), pages 285-293, August.
  29. Jan Gmys, 2022. "Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2502-2522, September.
  30. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
  31. Della Croce, F. & Narayan, V. & Tadei, R., 1996. "The two-machine total completion time flow shop problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 227-237, April.
  32. Stafford, Edward F. & Tseng, Fan T., 2002. "Two models for a family of flowshop sequencing problems," European Journal of Operational Research, Elsevier, vol. 142(2), pages 282-293, October.
  33. Pfister, Henry L., 1973. "Optimal Scheduling of Aircraft Traffic at an Airport," Transportation Research Forum Proceedings 1970s 318321, Transportation Research Forum.
  34. Selcuk Karabati & Panagiotis Kouvelis, 1993. "The permutation flow shop problem with sum‐of‐completion times performance criterion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(6), pages 843-862, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.