IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v252y2016i3p750-760.html
   My bibliography  Save this article

The two-machine flowshop total completion time problem: Branch-and-bound algorithms based on network-flow formulation

Author

Listed:
  • Detienne, Boris
  • Sadykov, Ruslan
  • Tanaka, Shunji

Abstract

We consider the flowshop problem on two machines with sequence-independent setup times to minimize total completion time. Large scale network flow formulations of the problem are suggested together with strong Lagrangian bounds based on these formulations. To cope with their size, filtering procedures are developed. To solve the problem to optimality, we embed the Lagrangian bounds into two branch-and-bound algorithms. The best algorithm is able to solve all 100-job instances of our testbed with setup times and all 140-job instances without setup times, thus significantly outperforming the best algorithms in the literature.

Suggested Citation

  • Detienne, Boris & Sadykov, Ruslan & Tanaka, Shunji, 2016. "The two-machine flowshop total completion time problem: Branch-and-bound algorithms based on network-flow formulation," European Journal of Operational Research, Elsevier, vol. 252(3), pages 750-760.
  • Handle: RePEc:eee:ejores:v:252:y:2016:i:3:p:750-760
    DOI: 10.1016/j.ejor.2016.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716300224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward Ignall & Linus Schrage, 1965. "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems," Operations Research, INFORMS, vol. 13(3), pages 400-412, June.
    2. Della Croce, F. & Narayan, V. & Tadei, R., 1996. "The two-machine total completion time flow shop problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 227-237, April.
    3. Hanif D. Sherali & Churlzu Lim, 2007. "Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 3-13, February.
    4. J. A. Hoogeveen & T. Kawaguchi, 1999. "Minimizing Total Completion Time in a Two-Machine Flowshop: Analysis of Special Cases," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 887-910, November.
    5. Peridy, Laurent & Pinson, Eric & Rivreau, David, 2003. "Using short-term memory to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 148(3), pages 591-603, August.
    6. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    7. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    8. Akkan, Can & Karabati, Selcuk, 2004. "The two-machine flowshop total completion time problem: Improved lower bounds and a branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 159(2), pages 420-429, December.
    9. Della Croce, F. & Ghirardi, M. & Tadei, R., 2002. "An improved branch-and-bound algorithm for the two machine total completion time flow shop problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 293-301, June.
    10. Ahmadi, Reza H. & Bagchi, Uttarayan, 1990. "Improved lower bounds for minimizing the sum of completion times of n jobs over m machines in a flow shop," European Journal of Operational Research, Elsevier, vol. 44(3), pages 331-336, February.
    11. Baptiste, Philippe & Carlier, Jacques & Jouglet, Antoine, 2004. "A Branch-and-Bound procedure to minimize total tardiness on one machine with arbitrary release dates," European Journal of Operational Research, Elsevier, vol. 158(3), pages 595-608, November.
    12. Gharbi, Anis & Ladhari, Talel & Msakni, Mohamed Kais & Serairi, Mehdi, 2013. "The two-machine flowshop scheduling problem with sequence-independent setup times: New lower bounding strategies," European Journal of Operational Research, Elsevier, vol. 231(1), pages 69-78.
    13. Ibaraki, Toshihide & Nakamura, Yuichi, 1994. "A dynamic programming method for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 76(1), pages 72-82, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Hosseininasab & Willem-Jan van Hoeve, 2021. "Exact Multiple Sequence Alignment by Synchronized Decision Diagrams," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 721-738, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
    2. Gharbi, Anis & Ladhari, Talel & Msakni, Mohamed Kais & Serairi, Mehdi, 2013. "The two-machine flowshop scheduling problem with sequence-independent setup times: New lower bounding strategies," European Journal of Operational Research, Elsevier, vol. 231(1), pages 69-78.
    3. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    4. Federico Della Croce & Andrea Grosso & Fabio Salassa, 2014. "A matheuristic approach for the two-machine total completion time flow shop problem," Annals of Operations Research, Springer, vol. 213(1), pages 67-78, February.
    5. Mohamed Ali Rakrouki & Anis Kooli & Sabrine Chalghoumi & Talel Ladhari, 2020. "A branch-and-bound algorithm for the two-machine total completion time flowshop problem subject to release dates," Operational Research, Springer, vol. 20(1), pages 21-35, March.
    6. Yen-Shing Tsai & Bertrand M. T. Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    7. J. A. Hoogeveen & T. Kawaguchi, 1999. "Minimizing Total Completion Time in a Two-Machine Flowshop: Analysis of Special Cases," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 887-910, November.
    8. Yen-Shing Tsai & Bertrand Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    9. Allahverdi, Ali & Al-Anzi, Fawaz S., 2006. "A branch-and-bound algorithm for three-machine flowshop scheduling problem to minimize total completion time with separate setup times," European Journal of Operational Research, Elsevier, vol. 169(3), pages 767-780, March.
    10. Della Croce, F. & Ghirardi, M. & Tadei, R., 2002. "An improved branch-and-bound algorithm for the two machine total completion time flow shop problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 293-301, June.
    11. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    12. Ladhari, Talel & Rakrouki, Mohamed Ali, 2009. "Heuristics and lower bounds for minimizing the total completion time in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 122(2), pages 678-691, December.
    13. Lin, Bertrand M.T. & Lin, Y.-Y. & Fang, K.-T., 2013. "Two-machine flow shop scheduling of polyurethane foam production," International Journal of Production Economics, Elsevier, vol. 141(1), pages 286-294.
    14. Ho, Johnny C., 1995. "Flowshop sequencing with mean flowtime objective," European Journal of Operational Research, Elsevier, vol. 81(3), pages 571-578, March.
    15. Fátima Pilar & Eliana Costa e Silva & Ana Borges, 2023. "Optimizing Vehicle Repairs Scheduling Using Mixed Integer Linear Programming: A Case Study in the Portuguese Automobile Sector," Mathematics, MDPI, vol. 11(11), pages 1-23, June.
    16. Sheikh, Shaya & Komaki, G.M. & Kayvanfar, Vahid & Teymourian, Ehsan, 2019. "Multi-Stage assembly flow shop with setup time and release time," Operations Research Perspectives, Elsevier, vol. 6(C).
    17. Baptiste, Pierre, 2006. "Stochastic algorithms: Using the worst to reach the best," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 41-51, February.
    18. Anna Ławrynowicz, 2006. "Hybrid approach with an expert system and a genetic algorithm to production management in the supply net," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 14(1‐2), pages 59-76, January.
    19. A Ławrynowicz, 2008. "Integration of production planning and scheduling using an expert system and a genetic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 455-463, April.
    20. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:252:y:2016:i:3:p:750-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.