IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v139y2002i2p293-301.html
   My bibliography  Save this article

An improved branch-and-bound algorithm for the two machine total completion time flow shop problem

Author

Listed:
  • Della Croce, F.
  • Ghirardi, M.
  • Tadei, R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Della Croce, F. & Ghirardi, M. & Tadei, R., 2002. "An improved branch-and-bound algorithm for the two machine total completion time flow shop problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 293-301, June.
  • Handle: RePEc:eee:ejores:v:139:y:2002:i:2:p:293-301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(01)00374-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. A. Hoogeveen & T. Kawaguchi, 1999. "Minimizing Total Completion Time in a Two-Machine Flowshop: Analysis of Special Cases," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 887-910, November.
    2. Edward Ignall & Linus Schrage, 1965. "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems," Operations Research, INFORMS, vol. 13(3), pages 400-412, June.
    3. Della Croce, F. & Narayan, V. & Tadei, R., 1996. "The two-machine total completion time flow shop problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 227-237, April.
    4. Della Croce, Federico, 1995. "Generalized pairwise interchanges and machine scheduling," European Journal of Operational Research, Elsevier, vol. 83(2), pages 310-319, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Wen-Chiung & Wu, Chin-Chia, 2004. "Minimizing total completion time in a two-machine flowshop with a learning effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 85-93, March.
    2. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    3. Ladhari, Talel & Rakrouki, Mohamed Ali, 2009. "Heuristics and lower bounds for minimizing the total completion time in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 122(2), pages 678-691, December.
    4. Detienne, Boris & Sadykov, Ruslan & Tanaka, Shunji, 2016. "The two-machine flowshop total completion time problem: Branch-and-bound algorithms based on network-flow formulation," European Journal of Operational Research, Elsevier, vol. 252(3), pages 750-760.
    5. Anna Ławrynowicz, 2006. "Hybrid approach with an expert system and a genetic algorithm to production management in the supply net," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 14(1‐2), pages 59-76, January.
    6. Mohamed Ali Rakrouki & Anis Kooli & Sabrine Chalghoumi & Talel Ladhari, 2020. "A branch-and-bound algorithm for the two-machine total completion time flowshop problem subject to release dates," Operational Research, Springer, vol. 20(1), pages 21-35, March.
    7. Yen-Shing Tsai & Bertrand Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    8. Akkan, Can & Karabati, Selcuk, 2004. "The two-machine flowshop total completion time problem: Improved lower bounds and a branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 159(2), pages 420-429, December.
    9. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
    10. Yen-Shing Tsai & Bertrand M. T. Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    11. Lin, Bertrand M.T. & Lin, Y.-Y. & Fang, K.-T., 2013. "Two-machine flow shop scheduling of polyurethane foam production," International Journal of Production Economics, Elsevier, vol. 141(1), pages 286-294.
    12. T'kindt, Vincent & Monmarche, Nicolas & Tercinet, Fabrice & Laugt, Daniel, 2002. "An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 250-257, October.
    13. Lin, B.M.T. & Lu, C.Y. & Shyu, S.J. & Tsai, C.Y., 2008. "Development of new features of ant colony optimization for flowshop scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 742-755, April.
    14. Allahverdi, Ali & Al-Anzi, Fawaz S., 2006. "A branch-and-bound algorithm for three-machine flowshop scheduling problem to minimize total completion time with separate setup times," European Journal of Operational Research, Elsevier, vol. 169(3), pages 767-780, March.
    15. A Ławrynowicz, 2008. "Integration of production planning and scheduling using an expert system and a genetic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 455-463, April.
    16. Federico Della Croce & Andrea Grosso & Fabio Salassa, 2014. "A matheuristic approach for the two-machine total completion time flow shop problem," Annals of Operations Research, Springer, vol. 213(1), pages 67-78, February.
    17. Gharbi, Anis & Ladhari, Talel & Msakni, Mohamed Kais & Serairi, Mehdi, 2013. "The two-machine flowshop scheduling problem with sequence-independent setup times: New lower bounding strategies," European Journal of Operational Research, Elsevier, vol. 231(1), pages 69-78.
    18. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detienne, Boris & Sadykov, Ruslan & Tanaka, Shunji, 2016. "The two-machine flowshop total completion time problem: Branch-and-bound algorithms based on network-flow formulation," European Journal of Operational Research, Elsevier, vol. 252(3), pages 750-760.
    2. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    3. Yen-Shing Tsai & Bertrand M. T. Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    4. Yen-Shing Tsai & Bertrand Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    5. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    6. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
    7. J. A. Hoogeveen & T. Kawaguchi, 1999. "Minimizing Total Completion Time in a Two-Machine Flowshop: Analysis of Special Cases," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 887-910, November.
    8. Baptiste, Pierre, 2006. "Stochastic algorithms: Using the worst to reach the best," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 41-51, February.
    9. Mohamed Ali Rakrouki & Anis Kooli & Sabrine Chalghoumi & Talel Ladhari, 2020. "A branch-and-bound algorithm for the two-machine total completion time flowshop problem subject to release dates," Operational Research, Springer, vol. 20(1), pages 21-35, March.
    10. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    11. Federico Della Croce & Andrea Grosso & Fabio Salassa, 2014. "A matheuristic approach for the two-machine total completion time flow shop problem," Annals of Operations Research, Springer, vol. 213(1), pages 67-78, February.
    12. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    13. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    14. Jan Gmys, 2022. "Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2502-2522, September.
    15. Selcuk Karabati & Panagiotis Kouvelis, 1993. "The permutation flow shop problem with sum‐of‐completion times performance criterion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(6), pages 843-862, October.
    16. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
    17. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
    18. Lin, B.M.T. & Lu, C.Y. & Shyu, S.J. & Tsai, C.Y., 2008. "Development of new features of ant colony optimization for flowshop scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 742-755, April.
    19. Hongjun Wei & Jinjiang Yuan & Yuan Gao, 2019. "Transportation and Batching Scheduling for Minimizing Total Weighted Completion Time," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    20. Sun, Xi & Morizawa, Kazuko & Nagasawa, Hiroyuki, 2003. "Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 146(3), pages 498-516, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:139:y:2002:i:2:p:293-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.