My bibliography
Save this item
Conditional Monte Carlo Estimation of Quantile Sensitivities
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.
- Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.
- Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
- Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
- Chang, Kuo-Hao, 2015. "A direct search method for unconstrained quantile-based simulation optimization," European Journal of Operational Research, Elsevier, vol. 246(2), pages 487-495.
- Jiaqiao Hu & Yijie Peng & Gongbo Zhang & Qi Zhang, 2022. "A Stochastic Approximation Method for Simulation-Based Quantile Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2889-2907, November.
- Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
- Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
- Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
- M. Merz & R. Richman & T. Tsanakas & M. V. Wuthrich, 2021. "Interpreting Deep Learning Models with Marginal Attribution by Conditioning on Quantiles," Papers 2103.11706, arXiv.org.
- Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
- Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019.
"How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis,"
Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248,
Emerald Group Publishing Limited.
- Joshua C.C. Chan & Liana Jacobi & Dan Zhu, 2018. "How sensitive are VAR forecasts to prior hyperparameters? An automated sensitivity analysis," CAMA Working Papers 2018-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Begen, Mehmet A. & Pun, Hubert & Yan, Xinghao, 2016. "Supply and demand uncertainty reduction efforts and cost comparison," International Journal of Production Economics, Elsevier, vol. 180(C), pages 125-134.
- Kleijnen, Jack P.C. & Pierreval, Henri & Zhang, Jin, 2011.
"Methodology for determining the acceptability of system designs in uncertain environments,"
European Journal of Operational Research, Elsevier, vol. 209(2), pages 176-183, March.
- Kleijnen, Jack P.C. & Pierreval, H. & Zhang, J., 2011. "Methodology for determining the acceptability of system designs in uncertain environments," Other publications TiSEM e7680883-7f29-4452-9533-6, Tilburg University, School of Economics and Management.
- Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
- L. Jeff Hong & Guangwu Liu, 2010. "Pathwise Estimation of Probability Sensitivities Through Terminating or Steady-State Simulations," Operations Research, INFORMS, vol. 58(2), pages 357-370, April.
- Katja Schilling & Daniel Bauer & Marcus C. Christiansen & Alexander Kling, 2020. "Decomposing Dynamic Risks into Risk Components," Management Science, INFORMS, vol. 66(12), pages 5738-5756, December.
- Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu & Ilya O. Ryzhov, 2021. "Efficient Sampling Allocation Procedures for Optimal Quantile Selection," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 230-245, January.
- Bernd Heidergott & Warren Volk-Makarewicz, 2016. "A Measure-Valued Differentiation Approach to Sensitivities of Quantiles," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 293-317, February.
- He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
- Guangwu Liu & L. Jeff Hong, 2011. "Kernel Estimation of the Greeks for Options with Discontinuous Payoffs," Operations Research, INFORMS, vol. 59(1), pages 96-108, February.
- Guangxin Jiang & Michael C. Fu, 2015. "Technical Note—On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis," Operations Research, INFORMS, vol. 63(2), pages 435-441, April.
- Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022.
"Avoiding zero probability events when computing Value at Risk contributions,"
Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
- Takaaki Koike & Yuri F. Saporito & Rodrigo S. Targino, 2020. "Avoiding zero probability events when computing Value at Risk contributions," Papers 2004.13235, arXiv.org, revised Jun 2022.
- J P C Kleijnen & W C M van Beers, 2013.
"Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2009. "Monotonicity-Preserving Bootstrapped Kriging Metamodels for Expensive Simulations," Other publications TiSEM 59d5c29b-25a3-4af9-921f-b, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2013. "Monotonicity-preserving bootstrapped kriging metamodels for expensive simulations," Other publications TiSEM 6b0d8c68-19f5-485b-b3e2-9, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2009. "Monotonicity-Preserving Bootstrapped Kriging Metamodels for Expensive Simulations," Discussion Paper 2009-75, Tilburg University, Center for Economic Research.
- Zhenyu Cui & Michael C. Fu & Jian-Qiang Hu & Yanchu Liu & Yijie Peng & Lingjiong Zhu, 2020. "On the Variance of Single-Run Unbiased Stochastic Derivative Estimators," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 390-407, April.
- Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
- Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
- Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
- Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
- Weihuan Huang, 2023. "Estimating Systemic Risk within Financial Networks: A Two-Step Nonparametric Method," Papers 2310.18658, arXiv.org.
- Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
- L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
- Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.
- Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
- Bernd Heidergott & Warren Volk-Makarewicz, 2013. "A Measure-Valued Differentiation Approach to Sensitivity Analysis of Quantiles," Tinbergen Institute Discussion Papers 13-082/III, Tinbergen Institute.
- Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
- Yijie Peng & Li Xiao & Bernd Heidergott & L. Jeff Hong & Henry Lam, 2022. "A New Likelihood Ratio Method for Training Artificial Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 638-655, January.
- Zhaolin Hu & Dali Zhang, 2018. "Utility‐based shortfall risk: Efficient computations via Monte Carlo," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 378-392, August.
- Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
- Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.