IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.18658.html
   My bibliography  Save this paper

Estimating Systemic Risk within Financial Networks: A Two-Step Nonparametric Method

Author

Listed:
  • Weihuan Huang

Abstract

CoVaR (conditional value-at-risk) is a crucial measure for assessing financial systemic risk, which is defined as a conditional quantile of a random variable, conditioned on other random variables reaching specific quantiles. It enables the measurement of risk associated with a particular node in financial networks, taking into account the simultaneous influence of risks from multiple correlated nodes. However, estimating CoVaR presents challenges due to the unobservability of the multivariate-quantiles condition. To address the challenges, we propose a two-step nonparametric estimation approach based on Monte-Carlo simulation data. In the first step, we estimate the unobservable multivariate-quantiles using order statistics. In the second step, we employ a kernel method to estimate the conditional quantile conditional on the order statistics. We establish the consistency and asymptotic normality of the two-step estimator, along with a bandwidth selection method. The results demonstrate that, under a mild restriction on the bandwidth, the estimation error arising from the first step can be ignored. Consequently, the asymptotic results depend solely on the estimation error of the second step, as if the multivariate-quantiles in the condition were observable. Numerical experiments demonstrate the favorable performance of the two-step estimator.

Suggested Citation

  • Weihuan Huang, 2023. "Estimating Systemic Risk within Financial Networks: A Two-Step Nonparametric Method," Papers 2310.18658, arXiv.org.
  • Handle: RePEc:arx:papers:2310.18658
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.18658
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    2. Dong Hwan Oh & Andrew J. Patton, 2018. "Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
    3. Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    4. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    5. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    6. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    7. Ana Babus, 2016. "The formation of financial networks," RAND Journal of Economics, RAND Corporation, vol. 47(2), pages 239-272, May.
    8. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    9. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    10. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    11. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    12. Emmanouil N. Karimalis & Nikos K. Nomikos, 2018. "Measuring systemic risk in the European banking sector: a copula CoVaR approach," The European Journal of Finance, Taylor & Francis Journals, vol. 24(11), pages 944-975, July.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Glasserman, Paul & Young, H. Peyton, 2015. "How likely is contagion in financial networks?," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 383-399.
    15. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    16. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    17. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    18. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    19. Michael C. Fu & L. Jeff Hong & Jian-Qiang Hu, 2009. "Conditional Monte Carlo Estimation of Quantile Sensitivities," Management Science, INFORMS, vol. 55(12), pages 2019-2027, December.
    20. Paul Glasserman & H. Peyton Young, 2016. "Contagion in Financial Networks," Journal of Economic Literature, American Economic Association, vol. 54(3), pages 779-831, September.
    21. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    2. Allen, Franklin & Gu, Xian, 2018. "The Interplay between Regulations and Financial Stability," CEPR Discussion Papers 12862, C.E.P.R. Discussion Papers.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Spiros Bougheas & Adam Hal Spencer, 2022. "Fire sales and ex ante valuation of systemic risk: A financial equilibrium networks approach," Discussion Papers 2022/04, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    5. Hasler, Michael & Khapko, Mariana & Marfè, Roberto, 2019. "Should investors learn about the timing of equity risk?," Journal of Financial Economics, Elsevier, vol. 132(3), pages 182-204.
    6. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
    7. Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
    8. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "A Dynamic Mean-Variance Analysis for Log Returns," Management Science, INFORMS, vol. 67(2), pages 1093-1108, February.
    9. Tran, Ngoc-Khanh & Vuong, Thao & Zeckhauser, Richard, 2016. "Loss Sequencing in Banking Networks: Threatened Banks as Strategic Dominoes," Working Paper Series 16-030, Harvard University, John F. Kennedy School of Government.
    10. Daniel Andrei & Michael Hasler, 2020. "Dynamic Attention Behavior Under Return Predictability," Management Science, INFORMS, vol. 66(7), pages 2906-2928, July.
    11. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    12. Capponi, Agostino & Corell, Felix & Stiglitz, Joseph E., 2022. "Optimal bailouts and the doom loop with a financial network," Journal of Monetary Economics, Elsevier, vol. 128(C), pages 35-50.
    13. in 't Veld, Daan & van der Leij, Marco & Hommes, Cars, 2020. "The formation of a core-periphery structure in heterogeneous financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    14. Mark Paddrik & H. Peyton Young, 2016. "Contagion in the CDS Market," Working Papers 16-12, Office of Financial Research, US Department of the Treasury.
    15. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    16. Barnett, William A. & Wang, Xue & Xu, Hai-Chuan & Zhou, Wei-Xing, 2022. "Hierarchical contagions in the interdependent financial network," Journal of Financial Stability, Elsevier, vol. 61(C).
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    19. Elliott, Matthew & Georg, Co-Pierre & Hazell, Jonathon, 2021. "Systemic risk shifting in financial networks," Journal of Economic Theory, Elsevier, vol. 191(C).
    20. Campbell, John Y. & Chacko, George & Rodriguez, Jorge & Viceira, Luis M., 2004. "Strategic asset allocation in a continuous-time VAR model," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2195-2214, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.18658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.