IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v83y2018icp29-31.html
   My bibliography  Save this article

Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)

Author

Listed:
  • Pesenti, Silvana M.
  • Tsanakas, Andreas
  • Millossovich, Pietro

Abstract

Major (2018) discusses Euler/Aumann–Shapley allocations for non-linear positively homogeneous portfolios. For such portfolio structures, plausibly arising in the context of reinsurance, he defines a distortion-type risk measure that facilitates assessment of ceded and net losses with reference to gross portfolio outcomes. Subsequently, Major (2018) derives explicit formulas for Euler allocations for this risk measure, thus (sub-)allocating ceded losses to the portfolio’s original components. In this comment, we build on Major’s (2018) insights but take a somewhat different direction, to consider Euler capital allocations for distortion risk measures directly applied to homogeneous portfolios. Explicit formulas are derived and our approach is compared with that of Major (2018) via a numerical example.

Suggested Citation

  • Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
  • Handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:29-31
    DOI: 10.1016/j.insmatheco.2018.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668718301124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
    2. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    3. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    4. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    5. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    6. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    7. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    8. Michael C. Fu & L. Jeff Hong & Jian-Qiang Hu, 2009. "Conditional Monte Carlo Estimation of Quantile Sensitivities," Management Science, INFORMS, vol. 55(12), pages 2019-2027, December.
    9. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    10. Tsanakas, Andreas, 2004. "Dynamic capital allocation with distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 223-243, October.
    11. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    12. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akif Ince & Ilaria Peri & Silvana Pesenti, 2021. "Risk contributions of lambda quantiles," Papers 2106.14824, arXiv.org, revised Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    2. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    3. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    4. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    5. Bauer, Daniel & Kamiya, Shinichi & Ping, Xiaohu & Zanjani, George, 2019. "Dynamic capital allocation with irreversible investments," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 138-152.
    6. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    7. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    8. Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    9. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    10. Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Other publications TiSEM 2c502ef8-76f0-47f5-ab45-1, Tilburg University, School of Economics and Management.
    11. Guangxin Jiang & Michael C. Fu, 2015. "Technical Note—On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis," Operations Research, INFORMS, vol. 63(2), pages 435-441, April.
    12. Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
    13. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    14. Bernd Heidergott & Warren Volk-Makarewicz, 2016. "A Measure-Valued Differentiation Approach to Sensitivities of Quantiles," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 293-317, February.
    15. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    16. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    17. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    18. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    19. Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
    20. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:29-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.