IDEAS home Printed from https://ideas.repec.org/r/inm/ormksc/v21y2002i2p209-220.html
   My bibliography  Save this item

The Impact of Heterogeneity and Ill-Conditioning on Diffusion Model Parameter Estimates

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Serdar Kale & David Arditi, 2006. "Diffusion of ISO 9000 certification in the precast concrete industry," Construction Management and Economics, Taylor & Francis Journals, vol. 24(5), pages 485-495.
  2. Guseo, Renato & Guidolin, Mariangela, 2015. "Heterogeneity in diffusion of innovations modelling: A few fundamental types," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 514-524.
  3. Yaniv Dover & Jacob Goldenberg & Daniel Shapira, 2012. "Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data," Marketing Science, INFORMS, vol. 31(4), pages 689-712, July.
  4. Christophe Van den Bulte & Raghuram Iyengar, 2011. "Tricked by Truncation: Spurious Duration Dependence and Social Contagion in Hazard Models," Marketing Science, INFORMS, vol. 30(2), pages 233-248, 03-04.
  5. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
  6. Michalakelis, C. & Sphicopoulos, T., 2012. "A population dependent diffusion model with a stochastic extension," International Journal of Forecasting, Elsevier, vol. 28(3), pages 587-606.
  7. Jonathan Beck, 2007. "The sales effect of word of mouth: a model for creative goods and estimates for novels," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 31(1), pages 5-23, March.
  8. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
  9. Donald Lehmann & Mercedes Esteban-Bravo, 2006. "When giving some away makes sense to jump-start the diffusion process," Marketing Letters, Springer, vol. 17(4), pages 243-254, December.
  10. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 145-165, October.
  11. Christophe Van den Bulte & Yogesh V. Joshi, 2007. "New Product Diffusion with Influentials and Imitators," Marketing Science, INFORMS, vol. 26(3), pages 400-421, 05-06.
  12. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
  13. Lemmens, A. & Croux, C. & Stremersch, S., 2012. "Dynamics in international market segmentation of new product growth," Other publications TiSEM 306086bd-670f-48d2-97d1-3, Tilburg University, School of Economics and Management.
  14. Guseo, Renato, 2016. "Latent heterogeneity effects in modelling individual hazards: A non-proportional approach," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 89-93.
  15. Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
  16. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
  17. Sebastiano A. Delre & Wander Jager & Marco A. Janssen, 2007. "Diffusion dynamics in small-world networks with heterogeneous consumers," Computational and Mathematical Organization Theory, Springer, vol. 13(2), pages 185-202, June.
  18. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
  19. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
  20. Park, Sang-June & Choi, Sungchul, 2016. "Valuation of adopters based on the Bass model for a new product," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 63-69.
  21. Anjana Susarla & Jeong-Ha Oh & Yong Tan, 2012. "Social Networks and the Diffusion of User-Generated Content: Evidence from YouTube," Information Systems Research, INFORMS, vol. 23(1), pages 23-41, March.
  22. Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.
  23. Chen, Yuwen & Carrillo, Janice E., 2011. "Single firm product diffusion model for single-function and fusion products," European Journal of Operational Research, Elsevier, vol. 214(2), pages 232-245, October.
  24. Nadarajah, Saralees & Kotz, Samuel, 2009. "Models for purchase frequency," European Journal of Operational Research, Elsevier, vol. 192(3), pages 1014-1026, February.
  25. Benson Tsz Kin Leung, 2022. "Innovation Diffusion among Case-based Decision-makers," Papers 2203.05785, arXiv.org, revised Jan 2023.
  26. Scaglione, Miriam & Giovannetti, Emanuele & Hamoudia, Mohsen, 2015. "The diffusion of mobile social networking: Exploring adoption externalities in four G7 countries," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1159-1170.
  27. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
  28. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
  29. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
  30. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
  31. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  32. Adarsh Anand & Mohini Agarwal & Gunjan Bansal & A. H. S. Garmabaki, 2016. "Studying product diffusion based on market coverage," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(4), pages 135-146, December.
  33. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.