IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v13y2007i2d10.1007_s10588-006-9007-2.html
   My bibliography  Save this article

Diffusion dynamics in small-world networks with heterogeneous consumers

Author

Listed:
  • Sebastiano A. Delre

    (University of Groningen)

  • Wander Jager

    (University of Groningen)

  • Marco A. Janssen

    (Arizona State University)

Abstract

Diffusions of new products and technologies through social networks can be formalized as spreading of infectious diseases. However, while epidemiological models describe infection in terms of transmissibility, we propose a diffusion model that explicitly includes consumer decision-making affected by social influences and word-of-mouth processes. In our agent-based model consumers’ probability of adoption depends on the external marketing effort and on the internal influence that each consumer perceives in his/her personal networks. Maintaining a given marketing effort and assuming its effect on the probability of adoption as linear, we can study how social processes affect diffusion dynamics and how the speed of the diffusion depends on the network structure and on consumer heterogeneity. First, we show that the speed of diffusion changes with the degree of randomness in the network. In markets with high social influence and in which consumers have a sufficiently large local network, the speed is low in regular networks, it increases in small-world networks and, contrarily to what epidemic models suggest, it becomes very low again in random networks. Second, we show that heterogeneity helps the diffusion. Ceteris paribus and varying the degree of heterogeneity in the population of agents simulation results show that the more heterogeneous the population, the faster the speed of the diffusion. These results can contribute to the development of marketing strategies for the launch and the dissemination of new products and technologies, especially in turbulent and fashionable markets.

Suggested Citation

  • Sebastiano A. Delre & Wander Jager & Marco A. Janssen, 2007. "Diffusion dynamics in small-world networks with heterogeneous consumers," Computational and Mathematical Organization Theory, Springer, vol. 13(2), pages 185-202, June.
  • Handle: RePEc:spr:comaot:v:13:y:2007:i:2:d:10.1007_s10588-006-9007-2
    DOI: 10.1007/s10588-006-9007-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-006-9007-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-006-9007-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ellison, Glenn, 1993. "Learning, Local Interaction, and Coordination," Econometrica, Econometric Society, vol. 61(5), pages 1047-1071, September.
    2. Gilles Laurent & G. L. Lilien & B. Pras, 1994. "Research Tradition in Marketing," Post-Print hal-00821717, HAL.
    3. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    6. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    7. Granovetter, Mark & Soong, Roland, 1986. "Threshold models of interpersonal effects in consumer demand," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 83-99, March.
    8. Solomon, Sorin & Weisbuch, Gerard & de Arcangelis, Lucilla & Jan, Naeem & Stauffer, Dietrich, 2000. "Social percolation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(1), pages 239-247.
    9. Rabik Ar Chatterjee & Jehoshua Eliashberg, 1990. "The Innovation Diffusion Process in a Heterogeneous Population: A Micromodeling Approach," Management Science, INFORMS, vol. 36(9), pages 1057-1079, September.
    10. Goldenberg, J & Libai, B & Solomon, S & Jan, N & Stauffer, D, 2000. "Marketing percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 335-347.
    11. Anderlini, Luca & Ianni, Antonella, 1996. "Path Dependence and Learning from Neighbors," Games and Economic Behavior, Elsevier, vol. 13(2), pages 141-177, April.
    12. Weisbuch, Gérard & Stauffer, Dietrich, 2000. "Hits and flops dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 563-576.
    13. Ron Adner & Daniel Levinthal, 2001. "Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation," Management Science, INFORMS, vol. 47(5), pages 611-628, May.
    14. Stauffer, D. & Jan, N., 2000. "Sharp peaks in the percolation model for stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(1), pages 215-219.
    15. Albert C. Bemmaor & Janghyuk Lee, 2002. "The Impact of Heterogeneity and Ill-Conditioning on Diffusion Model Parameter Estimates," Marketing Science, INFORMS, vol. 21(2), pages 209-220, November.
    16. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    17. Gérard Weisbuch & Dietrich Stauffer, 2000. "Hits and Flops Dynamics," Working Papers 00-07-036, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fibich, Gadi & Levin, Tomer, 2020. "Percolation of new products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    3. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    4. Groot, Robert D., 2005. "Lévy distribution and long correlation times in supermarket sales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 501-514.
    5. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 145-165, October.
    6. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    7. Dunia López-Pintado & Duncan J. Watts, 2008. "Social Influence, Binary Decisions and Collective Dynamics," Rationality and Society, , vol. 20(4), pages 399-443, November.
    8. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    9. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    10. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    11. Karolina Safarzyńska & Jeroen Bergh, 2010. "Evolutionary models in economics: a survey of methods and building blocks," Journal of Evolutionary Economics, Springer, vol. 20(3), pages 329-373, June.
    12. R. D. Groot, 2004. "Levy distribution and long correlation times in supermarket sales," Papers cond-mat/0412163, arXiv.org.
    13. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    14. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    15. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    16. Desirée Desierto, 2012. "Imitation Dynamics with Spatial Poisson-Distributed Review and Mutation Rates," UP School of Economics Discussion Papers 201204, University of the Philippines School of Economics.
    17. Alós-Ferrer, Carlos & Weidenholzer, Simon, 2014. "Imitation and the role of information in overcoming coordination failures," Games and Economic Behavior, Elsevier, vol. 87(C), pages 397-411.
    18. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    19. Alós-Ferrer, Carlos & Weidenholzer, Simon, 2008. "Contagion and efficiency," Journal of Economic Theory, Elsevier, vol. 143(1), pages 251-274, November.
    20. Alos-Ferrer, Carlos & Weidenholzer, Simon, 2007. "Partial bandwagon effects and local interactions," Games and Economic Behavior, Elsevier, vol. 61(2), pages 179-197, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:13:y:2007:i:2:d:10.1007_s10588-006-9007-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.