IDEAS home Printed from https://ideas.repec.org/r/ehl/lserod/2132.html
   My bibliography  Save this item

Edgeworth expansions for semiparametric averaged derivatives

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
  2. Matias D. Cattaneo & Max H. Farrell & Michael Jansson & Ricardo Masini, 2022. "Higher-order Refinements of Small Bandwidth Asymptotics for Density-Weighted Average Derivative Estimators," Papers 2301.00277, arXiv.org, revised Feb 2024.
  3. Matsushita, Yukitoshi & Otsu, Taisuke, 2020. "Likelihood inference on semiparametric models with generated regressors," LSE Research Online Documents on Economics 102696, London School of Economics and Political Science, LSE Library.
  4. Linton, Oliver, 2002. "Edgeworth approximations for semiparametric instrumental variable estimators and test statistics," Journal of Econometrics, Elsevier, vol. 106(2), pages 325-368, February.
  5. Marcia M Schafgans & Victoria Zinde-Walshyz, 2008. "Smoothness Adaptive AverageDerivative Estimation," STICERD - Econometrics Paper Series 529, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  6. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
  7. Chuan Goh, 2009. "Bootstrap-based Bandwidth Selection for Semiparametric Generalized Regression Estimators," Working Papers tecipa-375, University of Toronto, Department of Economics.
  8. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(1), pages 176-200, February.
  9. Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers 04/01, Institute for Fiscal Studies.
  10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
  11. Robinson, Peter M. & Thawornkaiwong, Supachoke, 2012. "Statistical inference on regression with spatial dependence," Journal of Econometrics, Elsevier, vol. 167(2), pages 521-542.
  12. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  13. Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2017. "Multivariate approximations to portfolio return distribution," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 347-361, September.
  14. repec:hum:wpaper:sfb649dp2009-028 is not listed on IDEAS
  15. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
  16. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
  17. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
  18. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2008. "Multivariate Gram-Charlier Densities," MPRA Paper 29073, University Library of Munich, Germany.
  19. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  20. Shunsuke Imai & Yoshihiko Nishiyama, 2022. "Higher-Order Asymptotic Properties of Kernel Density Estimator with Plug-In Bandwidth," KIER Working Papers 1076, Kyoto University, Institute of Economic Research.
  21. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 73(3), pages 903-948, May.
  22. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
  23. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
  24. Yoshihiko Nishiyama & Susumu Osada & Yasuhiro Sato, 2008. "OLS ESTIMATION AND THE t TEST REVISITED IN RANK‐SIZE RULE REGRESSION," Journal of Regional Science, Wiley Blackwell, vol. 48(4), pages 691-716, October.
  25. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
  26. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
  27. Matias D. Cattaneo & Michael Jansson, 2014. "Bootstrapping Kernel-Based Semiparametric Estimators," CREATES Research Papers 2014-25, Department of Economics and Business Economics, Aarhus University.
  28. Gao, Jiti & Gijbels, Irene, 2005. "Bandwidth selection for nonparametric kernel testing," MPRA Paper 11982, University Library of Munich, Germany, revised Jun 2007.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.