IDEAS home Printed from https://ideas.repec.org/r/een/camaaa/2013-74.html
   My bibliography  Save this item

Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
  2. Iseringhausen, Martin, 2020. "The time-varying asymmetry of exchange rate returns: A stochastic volatility – stochastic skewness model," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 275-292.
  3. Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
  4. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
  5. Jean Pierre Fernández Prada Saucedo & Gabriel Rodríguez, 2020. "Modeling the Volatility of Returns on Commodities: An Application and Empirical Comparison of GARCH and SV Models," Documentos de Trabajo / Working Papers 2020-484, Departamento de Economía - Pontificia Universidad Católica del Perú.
  6. Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
  7. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
  8. repec:wrk:wrkemf:20 is not listed on IDEAS
  9. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
  10. Bo Zhang & Jamie Cross & Na Guo, 2020. "Time-Varying Trend Models for Forecasting Inflation in Australia," Working Papers No 09/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  11. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
  12. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
  13. Aubrey Poon, 2018. "The transmission mechanism of Malaysian monetary policy: a time-varying vector autoregression approach," Empirical Economics, Springer, vol. 55(2), pages 417-444, September.
  14. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
  15. Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023. "Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
  16. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
  17. James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020. "Reconciled Estimates of Monthly GDP in the US," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
  18. repec:wrk:wrkemf:24 is not listed on IDEAS
  19. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
  20. Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
  21. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
  22. Chan, Joshua C.C. & Grant, Angelia L., 2015. "Pitfalls of estimating the marginal likelihood using the modified harmonic mean," Economics Letters, Elsevier, vol. 131(C), pages 29-33.
  23. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
  24. Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
  25. Eymen Errais & Dhikra Bahri, 2016. "Is Standard Deviation a Good Measure of Volatility? the Case of African Markets with Price Limits," Annals of Economics and Finance, Society for AEF, vol. 17(1), pages 145-165, May.
  26. Barnett William A. & Jawadi Fredj & Ftiti Zied, 2020. "Causal relationships between inflation and inflation uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-26, December.
  27. Bobeica, Elena & Hartwig, Benny, 2021. "The COVID-19 shock and challenges for time series models," Working Paper Series 2558, European Central Bank.
  28. Ciccarelli, Matteo & García, Juan Angel & Montes-Galdón, Carlos, 2017. "Unconventional monetary policy and the anchoring of inflation expectations," Working Paper Series 1995, European Central Bank.
  29. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
  30. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  31. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
  32. Carstensen, K. & Salzmann, L., 2017. "The G7 business cycle in a globalized world," Journal of International Money and Finance, Elsevier, vol. 73(PA), pages 134-161.
  33. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
  34. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
  35. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
  36. Jinzhi Li, 2021. "Bayesian estimation of the stochastic volatility model with double exponential jumps," Review of Derivatives Research, Springer, vol. 24(2), pages 157-172, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.