Time-Varying Trend Models for Forecasting Inflation in Australia
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Christine Garnier & Elmar Mertens & Edward Nelson, 2015.
"Trend Inflation in Advanced Economies,"
International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 65-136, September.
- Christine Garnier & Elmar Mertens & Edward Nelson, 2013. "Trend inflation in advanced economies," Finance and Economics Discussion Series 2013-74, Board of Governors of the Federal Reserve System (U.S.).
- Chan, Joshua C.C., 2013.
"Moving average stochastic volatility models with application to inflation forecast,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
- Joshua C C Chan, 2012. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," ANU Working Papers in Economics and Econometrics 2012-591, Australian National University, College of Business and Economics, School of Economics.
- Joshua C.C. Chan, 2013. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," CAMA Working Papers 2013-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Blix, Mårten, 1999. "Forecasting Swedish Inflation With a Markov Switching VAR," Working Paper Series 76, Sveriges Riksbank (Central Bank of Sweden).
- Clark, Todd E. & McCracken, Michael W., 2001.
"Tests of equal forecast accuracy and encompassing for nested models,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
- Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
- Todd E. Clark & Michael McCracken, 1999. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Computing in Economics and Finance 1999 1241, Society for Computational Economics.
- Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
- Garratt, Anthony & Mitchell, James & Vahey, Shaun P. & Wakerly, Elizabeth C., 2011.
"Real-time inflation forecast densities from ensemble Phillips curves,"
The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 77-87, January.
- Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2009. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," Birkbeck Working Papers in Economics and Finance 0910, Birkbeck, Department of Economics, Mathematics & Statistics.
- Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020.
"Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
- Bo Zhang & Joshua C.C. Chan & Jamie L. Cross, 2018. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," CAMA Working Papers 2018-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Robert Dixon & G.C. Lim, 2004.
"Underlying Inflation in Australia: Are the Existing Measures Satisfactory?,"
The Economic Record, The Economic Society of Australia, vol. 80(251), pages 373-386, December.
- Robert Dixon & Guay Lim, 2003. "Underlying Inflation in Australia: Are the Existing Measures Satisfactory?," Department of Economics - Working Papers Series 878, The University of Melbourne.
- Beechey, Meredith & Österholm, Pär, 2010. "Forecasting inflation in an inflation-targeting regime: A role for informative steady-state priors," International Journal of Forecasting, Elsevier, vol. 26(2), pages 248-264, April.
- Douglas Staiger & James H. Stock & Mark W. Watson, 1997. "The NAIRU, Unemployment and Monetary Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 33-49, Winter.
- Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Flint Brayton & John M. Roberts & John C. Williams, 1999. "What's happened to the Phillips curve?," Finance and Economics Discussion Series 1999-49, Board of Governors of the Federal Reserve System (U.S.).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Na Guo & Bo Zhang & Jamie L. Cross, 2022. "Time‐varying trend models for forecasting inflation in Australia," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 316-330, March.
- Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
- Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Arruda, Elano Ferreira & Ferreira, Roberto Tatiwa & Castelar, Ivan, 2011.
"Modelos Lineares e Não Lineares da Curva de Phillips para Previsão da Taxa de Inflação no Brasil,"
Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 65(3), September.
- Elano Ferreira Arruda & Roberto Tatiwa Ferreira & Ivan Castelar, 2008. "Modelos lineares e não lineares da curva de Phillips para previsão da taxa de Inflação no Brasil," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807211607140, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
- Orphanides, Athanasios & van Norden, Simon, 2005.
"The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
- Athanasios Orphanides & Simon van Norden, 2003. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CIRANO Working Papers 2003s-01, CIRANO.
- Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CEPR Discussion Papers 4830, C.E.P.R. Discussion Papers.
- Athanasios Orphanides & Simon van Norden, 2004. "The reliability of inflation forecasts based on output gap estimates in real time," Finance and Economics Discussion Series 2004-68, Board of Governors of the Federal Reserve System (U.S.).
- Luis Uzeda, 2022.
"State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models,"
Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53,
Emerald Group Publishing Limited.
- Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
- Luis Uzeda, 2018. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Staff Working Papers 18-14, Bank of Canada.
- Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
- Bhattacharya, Rudrani & Kapoor, Mrigankshi, 2020. "Forecasting Consumer Price Index Inflation in India: Vector Error Correction Mechanism Vs. Dynamic Factor Model Approach for Non-Stationary Time Series," Working Papers 20/323, National Institute of Public Finance and Policy.
- Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
- Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020.
"Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend,"
Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
- Stephen McKnight & Alexander Mihailov & Kerry Patterson & Fabio Rumler, 2014. "The Predictive Performance of Fundamental Inflation Concepts: An Application to the Euro Area and the United States," Economics Discussion Papers em-dp2014-03, Department of Economics, University of Reading.
- Stephen McKnight & Alexander Mihailov & Fabio Rumler, 2018. "NKPC-Based Inflation Forecasts with a Time-Varying Trend," Serie documentos de trabajo del Centro de Estudios Económicos 2018-05, El Colegio de México, Centro de Estudios Económicos.
- Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
- Clark, Todd E. & McCracken, Michael W., 2001.
"Tests of equal forecast accuracy and encompassing for nested models,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
- Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
- Todd E. Clark & Michael McCracken, 1999. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Computing in Economics and Finance 1999 1241, Society for Computational Economics.
- Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- Hofmann, Boris, 2009.
"Do monetary indicators lead euro area inflation?,"
Journal of International Money and Finance, Elsevier, vol. 28(7), pages 1165-1181, November.
- Hofmann, Boris, 2008. "Do monetary indicators lead euro area inflation?," Working Paper Series 867, European Central Bank.
- Clark, Todd E. & McCracken, Michael W., 2006.
"The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
- Todd E. Clark & Michael W. McCracken, 2003. "The predictive content of the output gap for inflation : resolving in-sample and out-of-sample evidence," Research Working Paper RWP 03-06, Federal Reserve Bank of Kansas City.
- Michael W. McCracken & Todd E. Clark, 2003. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Computing in Economics and Finance 2003 183, Society for Computational Economics.
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2017.
"An adaptive approach to forecasting three key macroeconomic variables for transitional China,"
Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2015. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," BOFIT Discussion Papers 12/2015, Bank of Finland Institute for Emerging Economies (BOFIT).
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2015. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," SFB 649 Discussion Papers 2015-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
More about this item
Keywords
trend model; inflation forecast; Bayesian analysis; stochastic volatility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bny:wpaper:0092. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helene Olsen (email available below). General contact details of provider: https://edirc.repec.org/data/cambino.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.