IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2020-99.html
   My bibliography  Save this paper

Time-varying trend models for forecasting inflation in Australia

Author

Listed:
  • Na Guo
  • Bo Zhang
  • Jamie Cross

Abstract

We investigate whether a class of trend models with various error term structures can improve upon the forecast performance of commonly used time series models when forecasting CPI inflation in Australia. The main result is that trend models tend to provide more accurate point and density forecasts compared to conventional autoregressive and Phillips curve models. The best short-term forecasts come from a trend model with stochastic volatility in the transitory component, while medium to long-run forecasts are better made by specifying a moving average component. We also find that trend models can capture various dynamics in periods of significance which conventional models cannot. This includes the dramatic reduction in inflation when the RBA adopted inflation targeting, the one-off 10 per cent Goods and Services Tax inflationary episode in 2000, and the gradual decline in inflation since 2014.

Suggested Citation

  • Na Guo & Bo Zhang & Jamie Cross, 2020. "Time-varying trend models for forecasting inflation in Australia," CAMA Working Papers 2020-99, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2020-99
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2020-11/99_2020_guo_zhang_cross.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    trend model; inflation forecast; Bayesian analysis; stochastic volatility;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2020-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.