IDEAS home Printed from https://ideas.repec.org/r/eee/transa/v120y2019icp17-30.html
   My bibliography  Save this item

On the potential for one-way electric vehicle car-sharing in future mobility systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shichao Sun & Yuanqian Liu & Yukun Yao & Zhengyu Duan & Xiaokun Wang, 2021. "The Determinants to Promote College Students’ Use of Car-Sharing: An Empirical Study at Dalian Maritime University, China," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
  2. Elnaz Ghorbani & Tristan Fluechter & Laura Calvet & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2023. "Optimizing Energy Consumption in Smart Cities’ Mobility: Electric Vehicles, Algorithms, and Collaborative Economy," Energies, MDPI, vol. 16(3), pages 1-19, January.
  3. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
  4. Wenbo Li & Mengzhe Wang & Miao Yu & Xiao Zheng, 2022. "The Impact of Social Conformity on Adopting Decision of Shared Electric Vehicles: A Choice Experiment Analysis in China," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
  5. Yinying He & Csaba Csiszár, 2021. "Model for Crowdsourced Parcel Delivery Embedded into Mobility as a Service Based on Autonomous Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, May.
  6. Tsouros, Ioannis & Tsirimpa, Athena & Pagoni, Ioanna & Polydoropoulou, Amalia, 2021. "MaaS users: Who they are and how much they are willing-to-pay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 470-480.
  7. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org, revised Oct 2024.
  8. Li, Qing & Liao, Feixiong, 2020. "Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 151-175.
  9. Katarzyna Turoń & Andrzej Kubik & Feng Chen & Hualan Wang & Bogusław Łazarz, 2020. "A Holistic Approach to Electric Shared Mobility Systems Development—Modelling and Optimization Aspects," Energies, MDPI, vol. 13(21), pages 1-19, November.
  10. Jakub Kraciuk & Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2022. "Innovative Energy Technologies in Road Transport in Selected EU Countries," Energies, MDPI, vol. 15(16), pages 1-18, August.
  11. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
  12. Andrzej Bąk & Elżbieta Nawrocka & Daria E. Jaremen, 2022. "“Sustainability” as a Motive for Choosing Shared-Mobility Services: The Case of Polish Consumers of Uber Services," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
  13. Cortina, Mélanie & Chiabaut, Nicolas & Leclercq, Ludovic, 2023. "Fostering synergy between transit and Autonomous Mobility-on-Demand systems: A dynamic modeling approach for the morning commute problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
  14. Qingyang Xiao & Jee Eun Kang, 2023. "Pricing in emerging mobility services: a comprehensive review," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(6), pages 482-500, December.
  15. Yirga Belay Muna & Cheng-Chien Kuo, 2022. "Feasibility and Techno-Economic Analysis of Electric Vehicle Charging of PV/Wind/Diesel/Battery Hybrid Energy System with Different Battery Technology," Energies, MDPI, vol. 15(12), pages 1-20, June.
  16. Ogata, Ryuto & Schmöcker, Jan-Dirk & Nakamura, Toshiyuki & Kuwahara, Masahiro, 2022. "On the potential of carsharing to attract regular trips of private car and public transport users in metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 386-404.
  17. Lucia Rotaris & Marko Bumbulovic, 2020. "Carsharing: Business models, and role of the decision maker," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 63-94.
  18. Mounce, Richard & Beecroft, Mark & Nelson, John D., 2020. "On the role of frameworks and smart mobility in addressing the rural mobility problem," Research in Transportation Economics, Elsevier, vol. 83(C).
  19. Corinaldesi, Carlo & Lettner, Georg & Auer, Hans, 2022. "On the characterization and evaluation of residential on-site E-car-sharing," Energy, Elsevier, vol. 246(C).
  20. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
  21. Hensher, David A. & Nelson, John D. & Mulley, Corinne, 2022. "Electric car sharing as a service (ECSaaS) – Acknowledging the role of the car in the public mobility ecosystem and what it might mean for MaaS as eMaaS?," Transport Policy, Elsevier, vol. 116(C), pages 212-216.
  22. Anastasia Roukouni & Gonçalo Homem de Almeida Correia, 2020. "Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
  23. Zu, Jinyan & Kong, Hui & Xu, Yang & Zhang, Xiaohu, 2024. "Carsharing in China: Impact of system and urban factors on usage and efficiency," Journal of Transport Geography, Elsevier, vol. 117(C).
  24. Nguyen, Tri K. & Hoang, Nam H. & Vu, Hai L., 2022. "A unified activity-based framework for one-way car-sharing services in multi-modal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
  25. Xanthopoulos, Stavros & van der Tuin, Marieke & Sharif Azadeh, Shadi & Correia, Gonçalo Homem de Almeida & van Oort, Niels & Snelder, Maaike, 2024. "Optimization of the location and capacity of shared multimodal mobility hubs to maximize travel utility in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  26. Dianfeng Zhang & Yanlai Li & Yiqun Li & Zifan Shen, 2022. "Service Failure Risk Assessment and Service Improvement of Self-Service Electric Vehicle," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
  27. Gulzari, Adeela & Wang, Yuchen & Prybutok, Victor, 2022. "A green experience with eco-friendly cars: A young consumer electric vehicle rental behavioral model," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
  28. Antonio García-Olivares & Jordi Solé & Roger Samsó & Joaquim Ballabrera-Poy, 2020. "Sustainable European Transport System in a 100% Renewable Economy," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
  29. Zihao Jiao & Lun Ran & Xin Liu & Yuli Zhang & Robin G. Qiu, 2020. "Integrating Price-Incentive and Trip-Selection Policies to Rebalance Shared Electric Vehicles," Service Science, INFORMS, vol. 12(4), pages 148-173, December.
  30. Richter, Maximilian A. & Hagenmaier, Markus & Bandte, Oliver & Parida, Vinit & Wincent, Joakim, 2022. "Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  31. Jingjing Jia & Shujie Ma & Yixi Xue & Deyang Kong, 2020. "Life-Cycle Break-Even Analysis of Electric Carsharing: A Comparative Study in China," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
  32. Anna Skowrońska-Szmer & Anna Kowalska-Pyzalska, 2021. "Key Factors of Development of Electromobility AMONG Microentrepreneurs: A Case Study from Poland," Energies, MDPI, vol. 14(3), pages 1-25, February.
  33. Li, Yanning & Li, Xinwei & Jenn, Alan, 2022. "Evaluating the emission benefits of shared autonomous electric vehicle fleets: A case study in California," Applied Energy, Elsevier, vol. 323(C).
  34. Zakharenko, Roman, 2023. "Pricing shared vehicles," Economics of Transportation, Elsevier, vol. 33(C).
  35. František Pollák & Peter Markovič & Helena Majdúchová, 2023. "Reputation of Electric Vehicles in the Environment of Carbon Reduction and Accelerated Digitization," Energies, MDPI, vol. 16(9), pages 1-24, April.
  36. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
  37. Yixi Xue & Yi Zhang & Yi Chen, 2019. "An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
  38. Xinyue Cao & Haizhu Zhou & Han Li & Xiangfei Kong, 2023. "Analysis of the Contribution of China’s Car-Sharing Service to Carbon Emission Reduction," Energies, MDPI, vol. 16(14), pages 1-20, July.
  39. Bastida-Molina, Paula & Ribó-Pérez, David & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2022. "What is the problem? The obstacles to the electrification of urban mobility in Mediterranean cities. Case study of Valencia, Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  40. Lin, Dung-Ying & Kuo, Jia-Kai, 2021. "The vehicle deployment and relocation problem for electric vehicle sharing systems considering demand and parking space stochasticity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  41. Kirsi Kotilainen & Pami Aalto & Jussi Valta & Antti Rautiainen & Matti Kojo & Benjamin K. Sovacool, 2019. "From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 573-600, December.
  42. Vasja Roblek & Maja Meško & Iztok Podbregar, 2021. "Impact of Car Sharing on Urban Sustainability," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
  43. Zhen, Lu & Tan, Zheyi & Wang, Shuaian & Yi, Wen & Lyu, Junyan, 2021. "Shared mobility oriented open vehicle routing with order radius decision," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 19-33.
  44. Sönke Beckmann & Sebastian Trojahn & Hartmut Zadek, 2023. "Process Model for the Introduction of Automated Buses," Sustainability, MDPI, vol. 15(19), pages 1-36, September.
  45. Dawid, Herbert & Muehlheusser, Gerd, 2022. "Smart products: Liability, investments in product safety, and the timing of market introduction," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
  46. Hu, Beibei & Sun, Yue & Li, Zixun & Zhang, Yanli & Sun, Huijun & Dong, Xianlei, 2024. "Competitive advantage of car-sharing based on travel costs comparison model: A case study of Beijing, China," Research in Transportation Economics, Elsevier, vol. 103(C).
  47. Matija Kovačić & Maja Mutavdžija & Krešimir Buntak, 2022. "New Paradigm of Sustainable Urban Mobility: Electric and Autonomous Vehicles—A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
  48. Wang, Wanying & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Li, Xuefang, 2020. "An empirical evaluation of different usage pattern between car-sharing battery electric vehicles and private ones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 115-129.
  49. Wu, Min & Yuen, Kum Fai, 2023. "Initial trust formation on shared autonomous vehicles: Exploring the effects of personality-, transfer- and performance-based stimuli," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
  50. Yanhong Yin & Han Wang & Jimin Xiong & Yufeng Zhu & Zhanfeng Tang, 2021. "Estimation of optimum supply of shared cars based on personal travel behaviors in condition of minimum energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13324-13339, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.