IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4364-d839417.html
   My bibliography  Save this article

Feasibility and Techno-Economic Analysis of Electric Vehicle Charging of PV/Wind/Diesel/Battery Hybrid Energy System with Different Battery Technology

Author

Listed:
  • Yirga Belay Muna

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Taipei 106, Taiwan)

  • Cheng-Chien Kuo

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Taipei 106, Taiwan)

Abstract

Promoting the development of green technologies and replacing fossil fuel vehicles with electric ones can abate the environmental anxieties and issues associated with energy supply security. The increasing demand for electric vehicles requires an upgrade and expansion of the available charging infrastructure to accommodate the fast public adoption of this type of transportation. Ethiopia set a pro-electric cars policy and made them excise-free even before the first electric vehicle charging stations were launched by Marathon Motors Engineering in 2021. This paper presents the first ever technical, economic and environmental evaluation of electric vehicle charging stations powered by hybrid intermittent generation systems in three cities in Ethiopia. This paper tests this model using three different battery types: Lead-acid (LA), Flow-Zince-Bromine (ZnBr) and Lithium-ion (LI), used individually. Using these three battery technologies, the proposed hybrid systems are then compared in terms of system sizing, economy, technical performance and environmental stability. The results show that the feasible configuration of Solar Photovoltaic (PV)/Diesel Generator (DG)/ZnBr battery systems provide the lowest net present cost (NPC), with values of $2.97M, $2.72M and $2.85M, and cost of energy (COE), with values $0.196, $0.18 and $0.188, in Addis Ababa, Jijiga and Bahir Dar, respectively. Of all feasible systems, the Wind Turbine (WT)/PV/LI, PV/LI and WT/PV/LI configurations have the highest values of NPC and COE in Addis Ababa, Jijiga and Bahir Dar. Using this configuration, the results demonstrate that ZnBr battery is the most favorable choice because the economic parameters, including total NPC and COE, are found to be lowest.

Suggested Citation

  • Yirga Belay Muna & Cheng-Chien Kuo, 2022. "Feasibility and Techno-Economic Analysis of Electric Vehicle Charging of PV/Wind/Diesel/Battery Hybrid Energy System with Different Battery Technology," Energies, MDPI, vol. 15(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4364-:d:839417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bryden, Thomas S. & Hilton, George & Cruden, Andrew & Holton, Tim, 2018. "Electric vehicle fast charging station usage and power requirements," Energy, Elsevier, vol. 152(C), pages 322-332.
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    3. Rishabh Ghotge & Yitzhak Snow & Samira Farahani & Zofia Lukszo & Ad van Wijk, 2020. "Optimized Scheduling of EV Charging in Solar Parking Lots for Local Peak Reduction under EV Demand Uncertainty," Energies, MDPI, vol. 13(5), pages 1-18, March.
    4. Majed A. Alotaibi & Ali M. Eltamaly, 2021. "A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia," Energies, MDPI, vol. 14(21), pages 1-24, October.
    5. Li, Chong & Zheng, Yuan & Li, Zhengyong & Zhang, Lei & Zhang, Lin & Shan, Yicai & Tang, Qinghui, 2021. "Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China," Energy, Elsevier, vol. 230(C).
    6. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    7. Sheilla Nyasha & Yvonne Gwenhure & Nicholas M Odhiambo, 2018. "Energy consumption and economic growth in Ethiopia: A dynamic causal linkage," Energy & Environment, , vol. 29(8), pages 1393-1412, December.
    8. Mounce, Richard & Nelson, John D., 2019. "On the potential for one-way electric vehicle car-sharing in future mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 17-30.
    9. Shuqing Li & Chuankun Ju & Jianliang Li & Ri Fang & Zhifei Tao & Bo Li & Tingting Zhang, 2021. "State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network," Energies, MDPI, vol. 14(2), pages 1-21, January.
    10. Kong, Weiwei & Luo, Yugong & Feng, Guixuan & Li, Keqiang & Peng, Huei, 2019. "Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid," Energy, Elsevier, vol. 186(C).
    11. Taghavifar, Hadi & Zomorodian, Zahra Sadat, 2021. "Techno-economic viability of on grid micro-hybrid PV/wind/Gen system for an educational building in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Usama, Al-mulali & Solarin, Sakiru Adebola & Salahuddin, Mohammad, 2020. "The prominence of renewable and non-renewable electricity generation on the environmental Kuznets curve: A case study of Ethiopia," Energy, Elsevier, vol. 211(C).
    13. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Rasel Ahmed & Md. Rokib Hasan & Suharto Al Hasan & Muhammad Aziz & Md. Emdadul Hoque, 2023. "Feasibility Study of the Grid-Connected Hybrid Energy System for Supplying Electricity to Support the Health and Education Sector in the Metropolitan Area," Energies, MDPI, vol. 16(4), pages 1-23, February.
    2. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    3. Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
    4. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Om Prakash Mahela & Ramakrishna S. S. Nuvvula & Divine Khan Ngwashi & Emmanuel Soriano Flores & Emmanuel Tanyi, 2023. "Techno-Economic Analysis and Optimization of Hybrid Renewable Energy System with Energy Storage under Two Operational Modes," Sustainability, MDPI, vol. 15(15), pages 1-31, July.
    5. Jieun Ihm & Bilal Amghar & Sejin Chun & Herie Park, 2023. "Optimum Design of an Electric Vehicle Charging Station Using a Renewable Power Generation System in South Korea," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    6. Asrin Seyedzahedi & Salah Bahramara, 2023. "Facilitating Investment in Photovoltaic Systems in Iran Considering Time-of-Use Feed-in-Tariff and Carbon Market," Energies, MDPI, vol. 16(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    2. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    3. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    4. Terkes, Musa & Arikan, Oktay & Gokalp, Erdin, 2024. "The effect of electric vehicle charging demand variability on optimal hybrid power systems with second-life lithium-ion or fresh Na–S batteries considering power quality," Energy, Elsevier, vol. 288(C).
    5. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    6. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    7. Ibrahim Yilmaz, 2023. "A Hybrid DEA–Fuzzy COPRAS Approach to the Evaluation of Renewable Energy: A Case of Wind Farms in Turkey," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    8. Carlsson, Fredrik & Demeke, Eyoual & Martinsson, Peter & Tesemma, Tewodros, 2020. "Cost of power outages for manufacturing firms in Ethiopia: A stated preference study," Energy Economics, Elsevier, vol. 88(C).
    9. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    10. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    11. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    12. Mounce, Richard & Beecroft, Mark & Nelson, John D., 2020. "On the role of frameworks and smart mobility in addressing the rural mobility problem," Research in Transportation Economics, Elsevier, vol. 83(C).
    13. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    14. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Hensher, David A. & Nelson, John D. & Mulley, Corinne, 2022. "Electric car sharing as a service (ECSaaS) – Acknowledging the role of the car in the public mobility ecosystem and what it might mean for MaaS as eMaaS?," Transport Policy, Elsevier, vol. 116(C), pages 212-216.
    16. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    17. Yi-Bin Chiu & Wenwen Zhang, 2023. "Moderating Effect of Financial Development on the Relationship between Renewable Energy and Carbon Emissions," Energies, MDPI, vol. 16(3), pages 1-18, February.
    18. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    19. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    20. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4364-:d:839417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.