IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v70y2017icp905-919.html
   My bibliography  Save this item

A review on supercooling of Phase Change Materials in thermal energy storage systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Turunen, Konsta & Yazdani, Maryam Roza & Puupponen, Salla & Santasalo-Aarnio, Annukka & Seppälä, Ari, 2020. "Cold-crystallizing erythritol-polyelectrolyte: Scaling up reliable long-term heat storage material," Applied Energy, Elsevier, vol. 266(C).
  2. Sudhakar, P. & Santosh, R. & Asthalakshmi, B. & Kumaresan, G. & Velraj, R., 2021. "Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique," Renewable Energy, Elsevier, vol. 172(C), pages 1433-1448.
  3. Wu, Shaofei & Yan, Ting & Kuai, Zihan & Pan, Weiguo, 2020. "Preparation and thermal property analysis of a novel phase change heat storage material," Renewable Energy, Elsevier, vol. 150(C), pages 1057-1065.
  4. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
  5. Mousavi, Seyedmostafa & Rismanchi, Behzad & Brey, Stefan & Aye, Lu, 2021. "PCM embedded radiant chilled ceiling: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  6. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
  7. Borri, Emiliano & Sze, Jia Yin & Tafone, Alessio & Romagnoli, Alessandro & Li, Yongliang & Comodi, Gabriele, 2020. "Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage," Applied Energy, Elsevier, vol. 275(C).
  8. Tu, Yubin & Zhu, Wei & Lu, Tianqi & Deng, Yuan, 2017. "A novel thermoelectric harvester based on high-performance phase change material for space application," Applied Energy, Elsevier, vol. 206(C), pages 1194-1202.
  9. Lilley, Drew & Lau, Jonathan & Dames, Chris & Kaur, Sumanjeet & Prasher, Ravi, 2021. "Impact of size and thermal gradient on supercooling of phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 290(C).
  10. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
  11. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  12. Liu, Lu & Zhang, Xuelai & Xu, Xiaofeng & Lin, Xiangwei & Zhao, Yi & Zou, Lingeng & Wu, Yifan & Zheng, Huifan, 2021. "Development of low-temperature eutectic phase change material with expanded graphite for vaccine cold chain logistics," Renewable Energy, Elsevier, vol. 179(C), pages 2348-2358.
  13. Zhang, Xiyao & Niu, Jianlei & Wu, Jian-Yong, 2019. "Development and characterization of novel and stable silicon nanoparticles-embedded PCM-in-water emulsions for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 1407-1416.
  14. Mohammad Reza Safaei & Hamid Reza Goshayeshi & Issa Chaer, 2019. "Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM," Energies, MDPI, vol. 12(10), pages 1-13, May.
  15. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  16. Yuan, Mengdi & Ren, Yunxiu & Xu, Chao & Ye, Feng & Du, Xiaoze, 2019. "Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 211-222.
  17. Cabaleiro, D. & Agresti, F. & Fedele, L. & Barison, S. & Hermida-Merino, C. & Losada-Barreiro, S. & Bobbo, S. & Piñeiro, M.M., 2022. "Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  18. Turunen, Konsta & Mikkola, Valtteri & Laukkanen, Timo & Seppälä, Ari, 2023. "Long-term thermal energy storage prototype of cold-crystallizing erythritol-polyelectrolyte," Applied Energy, Elsevier, vol. 332(C).
  19. Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
  20. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  21. Yanjun Zhang & Shuli Liu & Liu Yang & Xiue Yang & Yongliang Shen & Xiaojing Han, 2020. "Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring," Energies, MDPI, vol. 13(9), pages 1-16, May.
  22. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
  23. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
  24. Gong, Shuai & Li, Qiong & Shao, Liqun & Ding, Yuwen & Gao, Wenfeng, 2024. "Performance analysis of V-corrugated flat plate collector containing binary crystal thermal storage materials," Renewable Energy, Elsevier, vol. 221(C).
  25. Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
  26. Wong-Pinto, Liey-Si & Milian, Yanio & Ushak, Svetlana, 2020. "Progress on use of nanoparticles in salt hydrates as phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
  27. Luís Sousa Rodrigues & Daniel Lemos Marques & Jorge Augusto Ferreira & Vítor António Ferreira Costa & Nelson Dias Martins & Fernando José Neto Da Silva, 2022. "The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 15(20), pages 1-36, October.
  28. Dacheng Li & Yulong Ding & Peilun Wang & Shuhao Wang & Hua Yao & Jihong Wang & Yun Huang, 2019. "Integrating Two-Stage Phase Change Material Thermal Storage for Cascaded Waste Heat Recovery of Diesel-Engine-Powered Distributed Generation Systems: A Case Study," Energies, MDPI, vol. 12(11), pages 1-20, June.
  29. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
  30. Li, T.X. & Xu, J.X. & Wu, D.L. & He, F. & Wang, R.Z., 2019. "High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating," Applied Energy, Elsevier, vol. 248(C), pages 406-414.
  31. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  32. Liu, Huan & Jing, Jianwei & Liu, Jianxin & Wang, Xiaodong, 2024. "Sugar alcohol-based phase change materials for thermal energy storage: Optimization design and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  33. Hirmiz, R. & Lightstone, M.F. & Cotton, J.S., 2018. "Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials," Applied Energy, Elsevier, vol. 223(C), pages 11-29.
  34. Mukhamet, Tileuzhan & Kobeyev, Sultan & Nadeem, Abid & Memon, Shazim Ali, 2021. "Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations," Energy, Elsevier, vol. 215(PB).
  35. Zuo, Xiaochao & Li, Jianwen & Zhao, Xiaoguang & Yang, Huaming & Chen, Deliang, 2020. "Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 152(C), pages 579-589.
  36. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.
  37. Shamseddine, I. & Pennec, F. & Biwole, P. & Fardoun, F., 2022. "Supercooling of phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  38. David Cabaleiro & Samah Hamze & Filippo Agresti & Patrice Estellé & Simona Barison & Laura Fedele & Sergio Bobbo, 2019. "Dynamic Viscosity, Surface Tension and Wetting Behavior Studies of Paraffin–in–Water Nano–Emulsions," Energies, MDPI, vol. 12(17), pages 1-19, August.
  39. Li, Chaoen & Yu, Hang & Song, Yuan & Zhao, Mei, 2018. "Synthesis and characterization of PEG/ZSM-5 composite phase change materials for latent heat storage," Renewable Energy, Elsevier, vol. 121(C), pages 45-52.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.