IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v41y2015icp495-505.html
   My bibliography  Save this item

A critical review of detection and classification of power quality events

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Power quality recognition in distribution system with solar energy penetration using S-transform and Fuzzy C-means clustering," Renewable Energy, Elsevier, vol. 106(C), pages 37-51.
  2. Khokhar, Suhail & Mohd Zin, Abdullah Asuhaimi B. & Mokhtar, Ahmad Safawi B. & Pesaran, Mahmoud, 2015. "A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1650-1663.
  3. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  4. Prakash Mahela, Om & Gafoor Shaik, Abdul, 2016. "Topological aspects of power quality improvement techniques: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1129-1142.
  5. Luis A. Romero-Ramirez & David A. Elvira-Ortiz & Rene de J. Romero-Troncoso & Roque A. Osornio-Rios & Angel L. Zorita-Lamadrid & Sergio L. Gonzalez-Gonzalez & Daniel Morinigo-Sotelo, 2022. "Spectral Kurtosis Based Methodology for the Identification of Stationary Load Signatures in Electrical Signals from a Sustainable Building," Energies, MDPI, vol. 15(7), pages 1-19, March.
  6. Ferhat Ucar & Jose Cordova & Omer F. Alcin & Besir Dandil & Fikret Ata & Reza Arghandeh, 2019. "Bundle Extreme Learning Machine for Power Quality Analysis in Transmission Networks," Energies, MDPI, vol. 12(8), pages 1-26, April.
  7. Michał Gwóźdź & Łukasz Ciepliński, 2021. "An Algorithm for Calculation and Extraction of the Grid Voltage Component," Energies, MDPI, vol. 14(16), pages 1-12, August.
  8. Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  9. Samet, Haidar, 2016. "Evaluation of digital metering methods used in protection and reactive power compensation of micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 260-279.
  10. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
  11. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
  12. Misael Lopez-Ramirez & Eduardo Cabal-Yepez & Luis M. Ledesma-Carrillo & Homero Miranda-Vidales & Carlos Rodriguez-Donate & Rocio A. Lizarraga-Morales, 2018. "FPGA-Based Online PQD Detection and Classification through DWT, Mathematical Morphology and SVD," Energies, MDPI, vol. 11(4), pages 1-15, March.
  13. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
  14. Zhang, Liangheng & Jiang, Congmei & Pang, Aiping & He, Yu, 2024. "Super-efficient detector and defense method for adversarial attacks in power quality classification," Applied Energy, Elsevier, vol. 361(C).
  15. Tümay, Mehmet & Demirdelen, Tuğçe & Bal, Selva & Kayaalp, Rahmi İlker & Doğru, Burcu & Aksoy, Mahmut, 2017. "A review of magnetically controlled shunt reactor for power quality improvement with renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 215-228.
  16. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2015. "A review of distribution static compensator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 531-546.
  17. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
  18. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
  19. Michele Zanoni & Riccardo Chiumeo & Liliana Tenti & Massimo Volta, 2021. "Advanced Machine Learning Functionalities in the Medium Voltage Distributed Monitoring System QuEEN: A Macro-Regional Voltage Dips Severity Analysis," Energies, MDPI, vol. 14(23), pages 1-25, November.
  20. Xianyong Xiao & Wenxi Hu & Huaying Zhang & Jingwen Ai & Zixuan Zheng, 2018. "An Adaptive Approach for Voltage Sag Automatic Segmentation," Energies, MDPI, vol. 11(12), pages 1-17, December.
  21. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
  22. Yljon Seferi & Steven M. Blair & Christian Mester & Brian G. Stewart, 2021. "A Novel Arc Detection Method for DC Railway Systems," Energies, MDPI, vol. 14(2), pages 1-21, January.
  23. Ferhat Ucar & Omer F. Alcin & Besir Dandil & Fikret Ata, 2018. "Power Quality Event Detection Using a Fast Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-14, January.
  24. Eslami, Ahmadreza & Negnevitsky, Michael & Franklin, Evan & Lyden, Sarah, 2022. "Review of AI applications in harmonic analysis in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  25. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
  26. Misael Lopez-Ramirez & Luis Ledesma-Carrillo & Eduardo Cabal-Yepez & Carlos Rodriguez-Donate & Homero Miranda-Vidales & Arturo Garcia-Perez, 2016. "EMD-Based Feature Extraction for Power Quality Disturbance Classification Using Moments," Energies, MDPI, vol. 9(7), pages 1-15, July.
  27. Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & José Ignacio Rojas-Sola, 2017. "Power Quality and Energy Efficiency in the Pre-Evaluation of an Outdoor Lighting Renewal with Light-Emitting Diode Technology: Experimental Study and Amortization Analysis," Energies, MDPI, vol. 10(7), pages 1-13, June.
  28. Sang-Keun Moon & Jin-O Kim & Charles Kim, 2019. "Multi-Labeled Recognition of Distribution System Conditions by a Waveform Feature Learning Model," Energies, MDPI, vol. 12(6), pages 1-14, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.