IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3519-d191267.html
   My bibliography  Save this article

An Adaptive Approach for Voltage Sag Automatic Segmentation

Author

Listed:
  • Xianyong Xiao

    (College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

  • Wenxi Hu

    (College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

  • Huaying Zhang

    (China Southern Power Grid Shenzhen power supply bureau Co. Ltd, Shenzhen 518020, China)

  • Jingwen Ai

    (China Southern Power Grid Shenzhen power supply bureau Co. Ltd, Shenzhen 518020, China)

  • Zixuan Zheng

    (College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

Abstract

Voltage sag characterization is essential for extracting information about a sag event’s origin and how sag events impact sensitive equipment. In response to such needs, more characteristics are required, such as the phase-angle jump, point-on-wave, unbalance, and sag type. However, the absence of an effective automatic segmentation method is a barrier to obtaining these characteristics. In this paper, an automatic segmentation method is proposed to improve this situation. Firstly, an extended voltage sag characterization method is described, in which segmentation plays an important role. Then, a multi-resolution singular value decomposition method is introduced to detect the boundaries of each segment. Further, the unsolved problem of how to set a threshold adaptively for different waveforms is addressed, in which the sag depth, the mean square error, and the entropy of the sag waveform are considered. Simulation data and field measurements are utilized to validate the effectiveness and reliability of the proposed method. The results show that the accuracies of both boundary detection and segmentation obtained using the proposed method are higher than those obtained using existing methods. In general, the proposed method can be implemented into a power quality monitoring system as a preprocess to support related research activities.

Suggested Citation

  • Xianyong Xiao & Wenxi Hu & Huaying Zhang & Jingwen Ai & Zixuan Zheng, 2018. "An Adaptive Approach for Voltage Sag Automatic Segmentation," Energies, MDPI, vol. 11(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3519-:d:191267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3519/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahela, Om Prakash & Shaik, Abdul Gafoor & Gupta, Neeraj, 2015. "A critical review of detection and classification of power quality events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 495-505.
    2. Isabel M. Moreno-Garcia & Antonio Moreno-Munoz & Aurora Gil-de-Castro & Math Bollen & Irene Y. H. Gu, 2015. "Novel Segmentation Technique for Measured Three-Phase Voltage Dips," Energies, MDPI, vol. 8(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    2. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
    3. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    4. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Misael Lopez-Ramirez & Eduardo Cabal-Yepez & Luis M. Ledesma-Carrillo & Homero Miranda-Vidales & Carlos Rodriguez-Donate & Rocio A. Lizarraga-Morales, 2018. "FPGA-Based Online PQD Detection and Classification through DWT, Mathematical Morphology and SVD," Energies, MDPI, vol. 11(4), pages 1-15, March.
    6. Tümay, Mehmet & Demirdelen, Tuğçe & Bal, Selva & Kayaalp, Rahmi İlker & Doğru, Burcu & Aksoy, Mahmut, 2017. "A review of magnetically controlled shunt reactor for power quality improvement with renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 215-228.
    7. Ferhat Ucar & Omer F. Alcin & Besir Dandil & Fikret Ata, 2018. "Power Quality Event Detection Using a Fast Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-14, January.
    8. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    9. Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & José Ignacio Rojas-Sola, 2017. "Power Quality and Energy Efficiency in the Pre-Evaluation of an Outdoor Lighting Renewal with Light-Emitting Diode Technology: Experimental Study and Amortization Analysis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    10. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    11. Prakash Mahela, Om & Gafoor Shaik, Abdul, 2016. "Topological aspects of power quality improvement techniques: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1129-1142.
    12. Khokhar, Suhail & Mohd Zin, Abdullah Asuhaimi B. & Mokhtar, Ahmad Safawi B. & Pesaran, Mahmoud, 2015. "A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1650-1663.
    13. Michał Gwóźdź & Łukasz Ciepliński, 2021. "An Algorithm for Calculation and Extraction of the Grid Voltage Component," Energies, MDPI, vol. 14(16), pages 1-12, August.
    14. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    15. Zhang, Liangheng & Jiang, Congmei & Pang, Aiping & He, Yu, 2024. "Super-efficient detector and defense method for adversarial attacks in power quality classification," Applied Energy, Elsevier, vol. 361(C).
    16. Sang-Keun Moon & Jin-O Kim & Charles Kim, 2019. "Multi-Labeled Recognition of Distribution System Conditions by a Waveform Feature Learning Model," Energies, MDPI, vol. 12(6), pages 1-14, March.
    17. Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Yljon Seferi & Steven M. Blair & Christian Mester & Brian G. Stewart, 2021. "A Novel Arc Detection Method for DC Railway Systems," Energies, MDPI, vol. 14(2), pages 1-21, January.
    19. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Power quality recognition in distribution system with solar energy penetration using S-transform and Fuzzy C-means clustering," Renewable Energy, Elsevier, vol. 106(C), pages 37-51.
    20. Ferhat Ucar & Jose Cordova & Omer F. Alcin & Besir Dandil & Fikret Ata & Reza Arghandeh, 2019. "Bundle Extreme Learning Machine for Power Quality Analysis in Transmission Networks," Energies, MDPI, vol. 12(8), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3519-:d:191267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.