IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v35y2010i10p2325-2334.html
   My bibliography  Save this item

Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Goude, Anders & Bülow, Fredrik, 2013. "Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations," Renewable Energy, Elsevier, vol. 59(C), pages 193-201.
  2. Yang, Bo & Lawn, Chris, 2011. "Fluid dynamic performance of a vertical axis turbine for tidal currents," Renewable Energy, Elsevier, vol. 36(12), pages 3355-3366.
  3. Goude, Anders & Ågren, Olov, 2014. "Simulations of a vertical axis turbine in a channel," Renewable Energy, Elsevier, vol. 63(C), pages 477-485.
  4. Santiago Laín & Manuel A. Taborda & Omar D. López, 2018. "Numerical Study of the Effect of Winglets on the Performance of a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 11(2), pages 1-24, January.
  5. Yutaka Hara & Naoki Horita & Shigeo Yoshida & Hiromichi Akimoto & Takahiro Sumi, 2019. "Numerical Analysis of Effects of Arms with Different Cross-Sections on Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 12(11), pages 1-24, June.
  6. Ma, Yong & Zhu, Yuanyao & Zhang, Aiming & Hu, Chao & Liu, Sen & Li, Zhengyu, 2022. "Hydrodynamic performance of vertical axis hydrokinetic turbine based on Taguchi method," Renewable Energy, Elsevier, vol. 186(C), pages 573-584.
  7. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Kamau, Joseph N. & Danao, Louis Angelo M., 2015. "A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya," Renewable Energy, Elsevier, vol. 76(C), pages 648-661.
  8. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
  9. Tian, Wenlong & Mao, Zhaoyong & An, Xinyu & Zhang, Baoshou & Wen, Haibing, 2017. "Numerical study of energy recovery from the wakes of moving vehicles on highways by using a vertical axis wind turbine," Energy, Elsevier, vol. 141(C), pages 715-728.
  10. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces," Renewable Energy, Elsevier, vol. 83(C), pages 67-77.
  11. Villeneuve, Thierry & Winckelmans, Grégoire & Dumas, Guy, 2021. "Increasing the efficiency of vertical-axis turbines through improved blade support structures," Renewable Energy, Elsevier, vol. 169(C), pages 1386-1401.
  12. Wenlong Tian & Zhaoyong Mao & Yukai Li, 2017. "Numerical Simulations of a VAWT in the Wake of a Moving Car," Energies, MDPI, vol. 10(4), pages 1-14, April.
  13. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
  14. Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
  15. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
  16. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
  17. Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.
  18. Li, Ye & Willman, Lindsay, 2014. "Feasibility analysis of offshore renewables penetrating local energy systems in remote oceanic areas – A case study of emissions from an electricity system with tidal power in Southern Alaska," Applied Energy, Elsevier, vol. 117(C), pages 42-53.
  19. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
  20. Zeiner-Gundersen, Dag Herman, 2014. "A vertical axis hydrodynamic turbine with flexible foils, passive pitching, and low tip speed ratio achieves near constant RPM," Energy, Elsevier, vol. 77(C), pages 297-304.
  21. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
  22. Yong Ma & Chao Hu & Yulong Li & Rui Deng, 2018. "Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation," Energies, MDPI, vol. 11(12), pages 1-20, November.
  23. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
  24. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
  25. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
  26. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
  27. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
  28. Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.
  29. Zheng Yuan & Jin Jiang & Jun Zang & Qihu Sheng & Ke Sun & Xuewei Zhang & Renwei Ji, 2020. "A Fast Two-Dimensional Numerical Method for the Wake Simulation of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-21, December.
  30. Donghai Zhou & Xiaojing Sun, 2021. "Influences of Geometrical Parameters of Upstream Deflector on Performance of a H-Type Vertical Axis Marine Current Turbine," Energies, MDPI, vol. 14(14), pages 1-14, July.
  31. Urbina, Raul & Epps, Brenden P. & Peterson, Michael L. & Kimball, Richard W., 2019. "A dynamic stall model for analysis of cross-flow turbines using discrete vortex methods," Renewable Energy, Elsevier, vol. 130(C), pages 1130-1145.
  32. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.
  33. Li, Ye, 2014. "On the definition of the power coefficient of tidal current turbines and efficiency of tidal current turbine farms," Renewable Energy, Elsevier, vol. 68(C), pages 868-875.
  34. Yang, Min-Hsiung & Huang, Guan-Ming & Yeh, Rong-Hua, 2016. "Performance investigation of an innovative vertical axis turbine consisting of deflectable blades," Applied Energy, Elsevier, vol. 179(C), pages 875-887.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.