IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v30y2005i12p1873-1880.html
   My bibliography  Save this item

Heating and cooling degree-hours for Athens and Thessaloniki, Greece

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gelegenis, John J., 2009. "A simplified quadratic expression for the approximate estimation of heating degree-days to any base temperature," Applied Energy, Elsevier, vol. 86(10), pages 1986-1994, October.
  2. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
  3. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
  4. Bigerna, Simona, 2018. "Estimating temperature effects on the Italian electricity market," Energy Policy, Elsevier, vol. 118(C), pages 257-269.
  5. Kheiri, Farshad & Haberl, Jeff S. & Baltazar, Juan-Carlos, 2023. "Impact of outdoor humidity conditions on building energy performance and environmental footprint in the degree days-based climate classification," Energy, Elsevier, vol. 283(C).
  6. Mauricio Nath Lopes & Roberto Lamberts, 2018. "Development of a Metamodel to Predict Cooling Energy Consumption of HVAC Systems in Office Buildings in Different Climates," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
  7. Feng, Yanxiao & Duan, Qiuhua & Chen, Xi & Yakkali, Sai Santosh & Wang, Julian, 2021. "Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods," Applied Energy, Elsevier, vol. 291(C).
  8. Mehleri, E.D. & Sarimveis, H. & Markatos, N.C. & Papageorgiou, L.G., 2013. "Optimal design and operation of distributed energy systems: Application to Greek residential sector," Renewable Energy, Elsevier, vol. 51(C), pages 331-342.
  9. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
  10. Coskun, C., 2010. "A novel approach to degree-hour calculation: Indoor and outdoor reference temperature based degree-hour calculation," Energy, Elsevier, vol. 35(6), pages 2455-2460.
  11. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
  12. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
  13. Chien-Cheng Jung & Nai-Tzu Chen & Ying-Fang Hsia & Nai-Yun Hsu & Huey-Jen Su, 2021. "Influence of Indoor Temperature Exposure on Emergency Department Visits Due to Infectious and Non-Infectious Respiratory Diseases for Older People," IJERPH, MDPI, vol. 18(10), pages 1-11, May.
  14. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
  15. Özyurt, Ömer & Bakirci, Kadir & Erdoğan, Sadık & Yilmaz, Mehmet, 2009. "Bin weather data for the provinces of the Eastern Anatolia in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1319-1332.
  16. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.
  17. Wei, Zhichen & Calautit, John, 2023. "Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: Impact of occupancy patterns and climate change," Energy, Elsevier, vol. 269(C).
  18. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
  19. Ahmed, T. & Muttaqi, K.M. & Agalgaonkar, A.P., 2012. "Climate change impacts on electricity demand in the State of New South Wales, Australia," Applied Energy, Elsevier, vol. 98(C), pages 376-383.
  20. Katerina Tsikaloudaki & Kostas Laskos & Dimitrios Bikas, 2011. "On the Establishment of Climatic Zones in Europe with Regard to the Energy Performance of Buildings," Energies, MDPI, vol. 5(1), pages 1-13, December.
  21. Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
  22. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance," Sustainability, MDPI, vol. 7(7), pages 1-24, July.
  23. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
  24. Shakouri G., Hamed, 2019. "The share of cooling electricity in global warming: Estimation of the loop gain for the positive feedback," Energy, Elsevier, vol. 179(C), pages 747-761.
  25. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
  26. Martinez-Soto, Aner & Avendaño Vera, Constanza C. & Boso, Alex & Hofflinger, Alvaro & Shupler, Matthew, 2021. "Energy poverty influences urban outdoor air pollution levels during COVID-19 lockdown in south-central Chile," Energy Policy, Elsevier, vol. 158(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.