IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i10p5273-d555403.html
   My bibliography  Save this article

Influence of Indoor Temperature Exposure on Emergency Department Visits Due to Infectious and Non-Infectious Respiratory Diseases for Older People

Author

Listed:
  • Chien-Cheng Jung

    (Department of Public Health, China Medical University, Taichung City 406060, Taiwan)

  • Nai-Tzu Chen

    (Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan City 70403, Taiwan)

  • Ying-Fang Hsia

    (Big Data Center, China Medical University Hospital, Taichung City 404332, Taiwan)

  • Nai-Yun Hsu

    (Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan)

  • Huey-Jen Su

    (Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan)

Abstract

Previous studies have demonstrated that outdoor temperature exposure was an important risk factor for respiratory diseases. However, no study investigates the effect of indoor temperature exposure on respiratory diseases and further assesses cumulative effect. The objective of this study is to study the cumulative effect of indoor temperature exposure on emergency department visits due to infectious (IRD) and non-infectious (NIRD) respiratory diseases among older adults. Subjects were collected from the Longitudinal Health Insurance Database in Taiwan. The cumulative degree hours (CDHs) was used to assess the cumulative effect of indoor temperature exposure. A distributed lag nonlinear model with quasi-Poisson function was used to analyze the association between CDHs and emergency department visits due to IRD and NIRD. For IRD, there was a significant risk at 27, 28, 29, 30, and 31 °C when the CDHs exceeded 69, 40, 14, 5, and 1 during the cooling season (May to October), respectively, and at 19, 20, 21, 22, and 23 °C when the CDHs exceeded 8, 1, 1, 35, and 62 during the heating season (November to April), respectively. For NIRD, there was a significant risk at 19, 20, 21, 22, and 23 °C when the CDHs exceeded 1, 1, 16, 36, and 52 during the heating season, respectively; the CDHs at 1 was only associated with the NIRD at 31 °C during the cooling season. Our data also indicated that the CDHs was lower among men than women. We conclude that the cumulative effects of indoor temperature exposure should be considered to reduce IRD risk in both cooling and heating seasons and NIRD risk in heating season and the cumulative effect on different gender.

Suggested Citation

  • Chien-Cheng Jung & Nai-Tzu Chen & Ying-Fang Hsia & Nai-Yun Hsu & Huey-Jen Su, 2021. "Influence of Indoor Temperature Exposure on Emergency Department Visits Due to Infectious and Non-Infectious Respiratory Diseases for Older People," IJERPH, MDPI, vol. 18(10), pages 1-11, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5273-:d:555403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/10/5273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/10/5273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papakostas, K. & Kyriakis, N., 2005. "Heating and cooling degree-hours for Athens and Thessaloniki, Greece," Renewable Energy, Elsevier, vol. 30(12), pages 1873-1880.
    2. Satman, A & Yalcinkaya, N, 1999. "Heating and cooling degree-hours for Turkey," Energy, Elsevier, vol. 24(10), pages 833-840.
    3. Chia-Tsung Yeh & Ya-Yun Cheng & Tsai-Yun Liu, 2020. "Spatial Characteristics of Urban Green Spaces and Human Health: An Exploratory Analysis of Canonical Correlation," IJERPH, MDPI, vol. 17(9), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    2. Liu, Gang & Chen, Huizhen & Yuan, Ye & Song, Chenge, 2024. "Indoor thermal environment and human health: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Hiromi Kawasaki & Satoko Yamasaki & Susumu Fukita & Mika Iwasa & Tomoko Iki, 2022. "Nursing Students’ Retention of Knowledge by Basic Knowledge Type: An Exploratory Study," IJERPH, MDPI, vol. 19(9), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özyurt, Ömer & Bakirci, Kadir & Erdoğan, Sadık & Yilmaz, Mehmet, 2009. "Bin weather data for the provinces of the Eastern Anatolia in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1319-1332.
    2. Shakouri G., Hamed, 2019. "The share of cooling electricity in global warming: Estimation of the loop gain for the positive feedback," Energy, Elsevier, vol. 179(C), pages 747-761.
    3. Coskun, C., 2010. "A novel approach to degree-hour calculation: Indoor and outdoor reference temperature based degree-hour calculation," Energy, Elsevier, vol. 35(6), pages 2455-2460.
    4. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
    5. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    6. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    7. Ahmed, T. & Muttaqi, K.M. & Agalgaonkar, A.P., 2012. "Climate change impacts on electricity demand in the State of New South Wales, Australia," Applied Energy, Elsevier, vol. 98(C), pages 376-383.
    8. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
    9. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    10. Oktay, Z. & Coskun, C. & Dincer, I., 2011. "A new approach for predicting cooling degree-hours and energy requirements in buildings," Energy, Elsevier, vol. 36(8), pages 4855-4863.
    11. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    12. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    13. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    14. Bulut, Hüsamettin & Büyükalaca, Orhan & YIlmaz, Tuncay, 2001. "Bin weather data for Turkey," Applied Energy, Elsevier, vol. 70(2), pages 135-155, October.
    15. Feng, Yanxiao & Duan, Qiuhua & Chen, Xi & Yakkali, Sai Santosh & Wang, Julian, 2021. "Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods," Applied Energy, Elsevier, vol. 291(C).
    16. Kheiri, Farshad & Haberl, Jeff S. & Baltazar, Juan-Carlos, 2023. "Impact of outdoor humidity conditions on building energy performance and environmental footprint in the degree days-based climate classification," Energy, Elsevier, vol. 283(C).
    17. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    18. Ann Pulling Kuhn & Alexandra Cockerham & Nicole O’Reilly & Jacob Bustad & Victor Miranda & Tatiana V. Loboda & Maureen M. Black & Erin R. Hager, 2021. "Home and Neighborhood Physical Activity Location Availability among African American Adolescent Girls Living in Low-Income, Urban Communities: Associations with Objectively Measured Physical Activity," IJERPH, MDPI, vol. 18(9), pages 1-14, May.
    19. Gelegenis, John J., 2009. "A simplified quadratic expression for the approximate estimation of heating degree-days to any base temperature," Applied Energy, Elsevier, vol. 86(10), pages 1986-1994, October.
    20. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5273-:d:555403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.