IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v105y2017icp764-773.html
   My bibliography  Save this item

Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bahammou, Younes & Lamsyehe, Hamza & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali & Abdenouri, Naji, 2019. "Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying," Renewable Energy, Elsevier, vol. 142(C), pages 110-122.
  2. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
  3. García-Valladares, O. & Ortiz, N.M. & Pilatowsky, I. & Menchaca, A.C., 2020. "Solar thermal drying plant for agricultural products. Part 1: Direct air heating system," Renewable Energy, Elsevier, vol. 148(C), pages 1302-1320.
  4. Simo-Tagne, Merlin & Ndukwu, Macmanus Chinenye & Zoulalian, André & Bennamoun, Lyes & Kifani-Sahban, Fatima & Rogaume, Yann, 2020. "Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions," Renewable Energy, Elsevier, vol. 151(C), pages 659-673.
  5. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
  6. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
  7. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
  8. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
  9. S Ayyappan, 2018. "Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying," Energy & Environment, , vol. 29(8), pages 1482-1494, December.
  10. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
  11. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
  12. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
  13. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
  14. Gilago, Mulatu C. & Chandramohan, V.P., 2022. "Performance evaluation of natural and forced convection indirect type solar dryers during drying ivy gourd: An experimental study," Renewable Energy, Elsevier, vol. 182(C), pages 934-945.
  15. Maurya, Om Kapoor & Ekka, Jasinta Poonam & Kumar, Dhananjay & Dewangan, Disha & Singh, Adarsh, 2023. "Experimental and numerical methods for the performance analysis of a tubular three-pass solar air heater," Energy, Elsevier, vol. 283(C).
  16. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
  17. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
  18. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
  19. Abiodun Okunola & Timothy Adekanye & Endurance Idahosa, 2021. "Energy and exergy analyses of okra drying process in a forced convection cabinet dryer," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 8-16.
  20. Poblete, Rodrigo & Cortes, Ernesto & Macchiavello, Juan & Bakit, José, 2018. "Factors influencing solar drying performance of the red algae Gracilaria chilensis," Renewable Energy, Elsevier, vol. 126(C), pages 978-986.
  21. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
  22. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
  23. Kishk, Sameh S. & ElGamal, Ramadan A. & ElMasry, Gamal M., 2019. "Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products," Renewable Energy, Elsevier, vol. 133(C), pages 307-316.
  24. Ekka, Jasinta Poonam & Bala, Krishnendu & Muthukumar, P. & Kanaujiya, Dipak Kumar, 2020. "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, Elsevier, vol. 152(C), pages 55-66.
  25. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
  26. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).
  27. El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.
  28. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  29. Waseem Amjad & Muhammad Ali Raza & Furqan Asghar & Anjum Munir & Faisal Mahmood & Syed Nabeel Husnain & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator," Energies, MDPI, vol. 15(4), pages 1-15, February.
  30. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
  31. Tagnamas, Zakaria & Lamsyehe, Hamza & Moussaoui, Haytem & Bahammou, Younes & Kouhila, Mounir & Idlimam, Ali & Lamharrar, Abdelkader, 2021. "Energy and exergy analyses of carob pulp drying system based on a solar collector," Renewable Energy, Elsevier, vol. 163(C), pages 495-503.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.