IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v139y2015icp156-178.html
   My bibliography  Save this item

A survey of approaches combining safety and security for industrial control systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.
  2. Cheng, Ruijun & Cheng, Yu & Chen, Dewang & Song, Haifeng, 2021. "Online quantitative safety monitoring approach for unattended train operation system considering stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  3. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
  4. Wei Wang & Francesco Di Maio & Enrico Zio, 2019. "Adversarial Risk Analysis to Allocate Optimal Defense Resources for Protecting Cyber–Physical Systems from Cyber Attacks," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2766-2785, December.
  5. Carreras Guzman, Nelson H. & Zhang, Jin & Xie, Jing & Glomsrud, Jon Arne, 2021. "A Comparative Study of STPA-Extension and the UFoI-E Method for Safety and Security Co-analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
  6. Peter Blokland & Genserik Reniers, 2019. "An Ontological and Semantic Foundation for Safety and Security Science," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
  7. SICARD, Franck & ZAMAI, Éric & FLAUS, Jean-Marie, 2019. "An approach based on behavioral models and critical states distance notion for improving cybersecurity of industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 584-603.
  8. Fan, Shiqi & Yang, Zaili, 2022. "Safety and security co-analysis in transport systems: Current state and regulatory development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 369-388.
  9. Iaiani, Matteo & Tugnoli, Alessandro & Macini, Paolo & Cozzani, Valerio, 2021. "Outage and asset damage triggered by malicious manipulation of the control system in process plants," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  10. Siwar Kriaa & Marc Bouissou & Youssef Laarouchi, 2019. "A new safety and security risk analysis framework for industrial control systems," Journal of Risk and Reliability, , vol. 233(2), pages 151-174, April.
  11. Georgios Kavallieratos & Sokratis Katsikas & Vasileios Gkioulos, 2020. "Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey," Future Internet, MDPI, vol. 12(4), pages 1-17, April.
  12. Alanen, Jarmo & Linnosmaa, Joonas & Malm, Timo & Papakonstantinou, Nikolaos & Ahonen, Toni & Heikkilä, Eetu & Tiusanen, Risto, 2022. "Hybrid ontology for safety, security, and dependability risk assessments and Security Threat Analysis (STA) method for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  13. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
  14. Chatterjee, Samrat & Thekdi, Shital, 2020. "An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  15. A.N. Kuz'minov & V.M.Dzhukha & O.A. Ternovsky, 2017. "Methodology of Structural Stability Management for Industrial Enterprises," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 260-268.
  16. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
  17. Marcin Śliwiński & Emilian Piesik, 2021. "Designing Control and Protection Systems with Regard to Integrated Functional Safety and Cybersecurity Aspects," Energies, MDPI, vol. 14(8), pages 1-22, April.
  18. Kim, Hee Eun & Son, Han Seong & Kim, Jonghyun & Kang, Hyun Gook, 2017. "Systematic development of scenarios caused by cyber-attack-induced human errors in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 290-301.
  19. Jung, Sejin & Yoo, Junbeom & Malek, Sam, 2023. "A systematic co-engineering of safety and security analysis in requirements engineering process," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
  20. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
  21. Yin, Zhenqin & Zhuo, Yue & Ge, Zhiqiang, 2023. "Transfer adversarial attacks across industrial intelligent systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
  22. Bolbot, Victor & Kulkarni, Ketki & Brunou, Päivi & Banda, Osiris Valdez & Musharraf, Mashrura, 2022. "Developments and research directions in maritime cybersecurity: A systematic literature review and bibliometric analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
  23. Michał Syfert & Andrzej Ordys & Jan Maciej Kościelny & Paweł Wnuk & Jakub Możaryn & Krzysztof Kukiełka, 2022. "Integrated Approach to Diagnostics of Failures and Cyber-Attacks in Industrial Control Systems," Energies, MDPI, vol. 15(17), pages 1-24, August.
  24. Wang, Wei & Di Maio, Francesco & Zio, Enrico, 2020. "Considering the human operator cognitive process for the interpretation of diagnostic outcomes related to component failures and cyber security attacks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  25. Øystein Amundrud & Terje Aven & Roger Flage, 2017. "How the definition of security risk can be made compatible with safety definitions," Journal of Risk and Reliability, , vol. 231(3), pages 286-294, June.
  26. Kazimierz T. Kosmowski & Emilian Piesik & Jan Piesik & Marcin Śliwiński, 2022. "Integrated Functional Safety and Cybersecurity Evaluation in a Framework for Business Continuity Management," Energies, MDPI, vol. 15(10), pages 1-21, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.