IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3610-d815979.html
   My bibliography  Save this article

Integrated Functional Safety and Cybersecurity Evaluation in a Framework for Business Continuity Management

Author

Listed:
  • Kazimierz T. Kosmowski

    (Faculty of Electrical and Control Engineering, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland)

  • Emilian Piesik

    (Faculty of Electrical and Control Engineering, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland)

  • Jan Piesik

    (Michelin Polska Sp. z o.o., St. W. Leonharda 9, 10-454 Olsztyn, Poland)

  • Marcin Śliwiński

    (Faculty of Electrical and Control Engineering, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland)

Abstract

This article outlines an integrated functional safety and cybersecurity evaluation approach within a framework for business continuity management (BCM) in energy companies, including those using Industry 4.0 business and technical solutions. In such companies, information and communication technology (ICT), and industrial automation and control system (IACS) play important roles. Using advanced technologies in modern manufacturing systems and process plants can, however, create management impediments due to the openness of these technologies to external systems and networks via various communication channels. This makes company assets and resources potentially vulnerable to risks, e.g., due to cyber-attacks. In the BCM-oriented approach proposed here, both preventive and recovery activities are considered in light of engineering best practices and selected international standards, reports, and domain publications.

Suggested Citation

  • Kazimierz T. Kosmowski & Emilian Piesik & Jan Piesik & Marcin Śliwiński, 2022. "Integrated Functional Safety and Cybersecurity Evaluation in a Framework for Business Continuity Management," Energies, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3610-:d:815979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lundteigen, Mary Ann & Rausand, Marvin & Utne, Ingrid Bouwer, 2009. "Integrating RAMS engineering and management with the safety life cycle of IEC 61508," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1894-1903.
    2. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    3. Kriaa, Siwar & Pietre-Cambacedes, Ludovic & Bouissou, Marc & Halgand, Yoran, 2015. "A survey of approaches combining safety and security for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 156-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Almeida, 2023. "Prospects of Cybersecurity in Smart Cities," Future Internet, MDPI, vol. 15(9), pages 1-21, August.
    2. Michał Syfert & Andrzej Ordys & Jan Maciej Kościelny & Paweł Wnuk & Jakub Możaryn & Krzysztof Kukiełka, 2022. "Integrated Approach to Diagnostics of Failures and Cyber-Attacks in Industrial Control Systems," Energies, MDPI, vol. 15(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Śliwiński & Emilian Piesik, 2021. "Designing Control and Protection Systems with Regard to Integrated Functional Safety and Cybersecurity Aspects," Energies, MDPI, vol. 14(8), pages 1-22, April.
    2. Siwar Kriaa & Marc Bouissou & Youssef Laarouchi, 2019. "A new safety and security risk analysis framework for industrial control systems," Journal of Risk and Reliability, , vol. 233(2), pages 151-174, April.
    3. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    4. Kim, Hee Eun & Son, Han Seong & Kim, Jonghyun & Kang, Hyun Gook, 2017. "Systematic development of scenarios caused by cyber-attack-induced human errors in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 290-301.
    5. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    6. Iaiani, Matteo & Tugnoli, Alessandro & Macini, Paolo & Cozzani, Valerio, 2021. "Outage and asset damage triggered by malicious manipulation of the control system in process plants," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Bolbot, Victor & Kulkarni, Ketki & Brunou, Päivi & Banda, Osiris Valdez & Musharraf, Mashrura, 2022. "Developments and research directions in maritime cybersecurity: A systematic literature review and bibliometric analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    8. Cheng, Ruijun & Cheng, Yu & Chen, Dewang & Song, Haifeng, 2021. "Online quantitative safety monitoring approach for unattended train operation system considering stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Carreras Guzman, Nelson H. & Zhang, Jin & Xie, Jing & Glomsrud, Jon Arne, 2021. "A Comparative Study of STPA-Extension and the UFoI-E Method for Safety and Security Co-analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Redutskiy Yury & Balycheva Marina & Dybdahl Hendrik, 2022. "Employee scheduling and maintenance planning for safety systems at the remotely located oil and gas industrial facilities," Engineering Management in Production and Services, Sciendo, vol. 14(4), pages 1-21, December.
    11. Chatterjee, Samrat & Thekdi, Shital, 2020. "An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    13. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    14. SICARD, Franck & ZAMAI, Éric & FLAUS, Jean-Marie, 2019. "An approach based on behavioral models and critical states distance notion for improving cybersecurity of industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 584-603.
    15. Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.
    16. Peter Blokland & Genserik Reniers, 2019. "An Ontological and Semantic Foundation for Safety and Security Science," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    17. Georgios Kavallieratos & Sokratis Katsikas & Vasileios Gkioulos, 2020. "Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey," Future Internet, MDPI, vol. 12(4), pages 1-17, April.
    18. Zh. A. Dayev & Ye. T. Nurushev, 2022. "Reduction of production risks by improving the method of failure mode and effect analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 278-288, February.
    19. Jung, Sejin & Yoo, Junbeom & Malek, Sam, 2023. "A systematic co-engineering of safety and security analysis in requirements engineering process," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    20. Alanen, Jarmo & Linnosmaa, Joonas & Malm, Timo & Papakonstantinou, Nikolaos & Ahonen, Toni & Heikkilä, Eetu & Tiusanen, Risto, 2022. "Hybrid ontology for safety, security, and dependability risk assessments and Security Threat Analysis (STA) method for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3610-:d:815979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.