IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v43y2023ics1874548223000550.html
   My bibliography  Save this article

A systematic co-engineering of safety and security analysis in requirements engineering process

Author

Listed:
  • Jung, Sejin
  • Yoo, Junbeom
  • Malek, Sam

Abstract

Co-engineering safety and security is increasingly important in safety-critical systems as more diverse interacting functions are implemented in software. Many studies have tried to perform safety and security analyses in unified or in parallel. While the unified approach requires more complex analysis with new delicate methods, the parallel needs further improvement on additional integration activity for harmonizing safety and security analyses results. This paper tries to improve the harmonization activity seamlessly and systematically in typical requirements engineering process for safety-critical systems. It encompasses both requirements elicitation and analysis as well as safety and security analyses, regardless of which analysis techniques are used. The paper suggests performing an appropriate safety analysis first to derive safety requirements as summary information. It then performs goal-tree analysis to refine the high-level safety requirements into lower-level ones, from which any security analysis can work on to derive security requirements. Another goal-tree analysis then tries to refine the high-level security requirements into specific functional ones too, and it ends the analysis activity in a cycle of requirements engineering process. The sequence of safety analysis, goal-tree refinement, security analysis and another goal-tree refinement is seamlessly iterated in the process of requirements engineering, where any conflict of requirements will have an opportunity to be resolved. Our case study of a simplified UAV example uses STPA and STRIDE techniques for safety and security analysis respectively, and shows that the proposed approach is fully applicable up to industrial cases.

Suggested Citation

  • Jung, Sejin & Yoo, Junbeom & Malek, Sam, 2023. "A systematic co-engineering of safety and security analysis in requirements engineering process," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
  • Handle: RePEc:eee:ijocip:v:43:y:2023:i:c:s1874548223000550
    DOI: 10.1016/j.ijcip.2023.100642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548223000550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2023.100642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kriaa, Siwar & Pietre-Cambacedes, Ludovic & Bouissou, Marc & Halgand, Yoran, 2015. "A survey of approaches combining safety and security for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 156-178.
    2. Georgios Kavallieratos & Sokratis Katsikas & Vasileios Gkioulos, 2020. "Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey," Future Internet, MDPI, vol. 12(4), pages 1-17, April.
    3. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolbot, Victor & Kulkarni, Ketki & Brunou, Päivi & Banda, Osiris Valdez & Musharraf, Mashrura, 2022. "Developments and research directions in maritime cybersecurity: A systematic literature review and bibliometric analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    2. Chatterjee, Samrat & Thekdi, Shital, 2020. "An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    4. Kim, Hee Eun & Son, Han Seong & Kim, Jonghyun & Kang, Hyun Gook, 2017. "Systematic development of scenarios caused by cyber-attack-induced human errors in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 290-301.
    5. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    6. Iaiani, Matteo & Tugnoli, Alessandro & Macini, Paolo & Cozzani, Valerio, 2021. "Outage and asset damage triggered by malicious manipulation of the control system in process plants," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Chelouati, Mohammed & Boussif, Abderraouf & Beugin, Julie & El Koursi, El-Miloudi, 2023. "Graphical safety assurance case using Goal Structuring Notation (GSN) — challenges, opportunities and a framework for autonomous trains," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Bolbot, Victor & Trivyza, Nikoletta L. & Theotokatos, Gerasimos & Boulougouris, Evangelos & Rentizelas, Athanasios & Vassalos, Dracos, 2020. "Cruise ships power plant optimisation and comparative analysis," Energy, Elsevier, vol. 196(C).
    9. Cheng, Ruijun & Cheng, Yu & Chen, Dewang & Song, Haifeng, 2021. "Online quantitative safety monitoring approach for unattended train operation system considering stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Carreras Guzman, Nelson H. & Zhang, Jin & Xie, Jing & Glomsrud, Jon Arne, 2021. "A Comparative Study of STPA-Extension and the UFoI-E Method for Safety and Security Co-analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Kazimierz T. Kosmowski & Emilian Piesik & Jan Piesik & Marcin Śliwiński, 2022. "Integrated Functional Safety and Cybersecurity Evaluation in a Framework for Business Continuity Management," Energies, MDPI, vol. 15(10), pages 1-21, May.
    12. Bolton, Matthew L. & Molinaro, Kylie A. & Houser, Adam M., 2019. "A formal method for assessing the impact of task-based erroneous human behavior on system safety," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 168-180.
    13. Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.
    14. Peter Blokland & Genserik Reniers, 2019. "An Ontological and Semantic Foundation for Safety and Security Science," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    15. Georgios Kavallieratos & Sokratis Katsikas & Vasileios Gkioulos, 2020. "Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey," Future Internet, MDPI, vol. 12(4), pages 1-17, April.
    16. Wang, Yang & Ye, Ting & Zio, Enrico & Wang, Tengfei & Wu, Bing, 2024. "A blockchain-based credibility evaluation scheme for navigational event dissemination in the internet of ships," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    17. Wu, Shimeng & Jiang, Yuchen & Luo, Hao & Zhang, Jiusi & Yin, Shen & Kaynak, Okyay, 2022. "An integrated data-driven scheme for the defense of typical cyber–physical attacks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Øystein Amundrud & Terje Aven & Roger Flage, 2017. "How the definition of security risk can be made compatible with safety definitions," Journal of Risk and Reliability, , vol. 231(3), pages 286-294, June.
    19. Varajão, João & Fernandes, Gabriela & Amaral, António & Gonçalves, A. Manuela, 2021. "Team Resilience Model: An Empirical Examination of Information Systems Projects," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    20. Wei Wang & Francesco Di Maio & Enrico Zio, 2019. "Adversarial Risk Analysis to Allocate Optimal Defense Resources for Protecting Cyber–Physical Systems from Cyber Attacks," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2766-2785, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:43:y:2023:i:c:s1874548223000550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.