IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v124y2014icp92-104.html
   My bibliography  Save this item

An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
  2. Al-Dahidi, Sameer & Di Maio, Francesco & Baraldi, Piero & Zio, Enrico, 2016. "Remaining useful life estimation in heterogeneous fleets working under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 109-124.
  3. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
  4. Liu, Junqiang & Lei, Fan & Pan, Chunlu & Hu, Dongbin & Zuo, Hongfu, 2021. "Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  5. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
  6. Zhao, Zhiyao & Quan, Quan & Cai, Kai-Yuan, 2017. "A health performance prediction method of large-scale stochastic linear hybrid systems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 74-88.
  7. Langeron, Y. & Grall, A. & Barros, A., 2015. "A modeling framework for deteriorating control system and predictive maintenance of actuators," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 22-36.
  8. Eleftheroglou, Nick & Mansouri, Sina Sharif & Loutas, Theodoros & Karvelis, Petros & Georgoulas, George & Nikolakopoulos, George & Zarouchas, Dimitrios, 2019. "Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the Lithium-Polymer batteries of unmanned aerial vehicles with uncerta," Applied Energy, Elsevier, vol. 254(C).
  9. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
  10. Zhiguo Zeng & Francesco Di Maio & Enrico Zio & Rui Kang, 2017. "A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods," Journal of Risk and Reliability, , vol. 231(1), pages 36-52, February.
  11. Eleftheroglou, Nick & Galanopoulos, Georgios & Loutas, Theodoros, 2024. "Similarity learning hidden semi-Markov model for adaptive prognostics of composite structures," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  12. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
  13. Wu, Jianing & Yan, Shaoze & Zuo, Ming J., 2016. "Evaluating the reliability of multi-body mechanisms: A method considering the uncertainties of dynamic performance," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 96-106.
  14. Zheng, Niannian & Luan, Xiaoli & Shardt, Yuri A.W. & Liu, Fei, 2024. "Dynamic-controlled principal component analysis for fault detection and automatic recovery," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  15. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  16. Compare, Michele & Baraldi, Piero & Marelli, Paolo & Zio, Enrico, 2020. "Partially observable Markov decision processes for optimal operations of gas transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  17. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  18. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  19. Eleftheroglou, Nick & Zarouchas, Dimitrios & Loutas, Theodoros & Alderliesten, Rene & Benedictus, Rinze, 2018. "Structural health monitoring data fusion for in-situ life prognosis of composite structures," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 40-54.
  20. Sameer Al-Dahidi & Francesco Di Maio & Piero Baraldi & Enrico Zio, 2017. "A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets," Journal of Risk and Reliability, , vol. 231(4), pages 350-363, August.
  21. Zhao, Zeqi & Bin Liang, & Wang, Xueqian & Lu, Weining, 2017. "Remaining useful life prediction of aircraft engine based on degradation pattern learning," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 74-83.
  22. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
  23. Malinowski, Simon & Chebel-Morello, Brigitte & Zerhouni, Noureddine, 2015. "Remaining useful life estimation based on discriminating shapelet extraction," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 279-288.
  24. Zhao, Zeyun & Wang, Jia & Tao, Qian & Li, Andong & Chen, Yiyang, 2024. "An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  25. Yuanju Qu & Zengtao Hou, 2022. "Degradation principle of machines influenced by maintenance," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1521-1530, June.
  26. Ying Liao & Yisha Xiang & Min Wang, 2021. "Health assessment and prognostics based on higher‐order hidden semi‐Markov models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(2), pages 259-276, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.