IDEAS home Printed from https://ideas.repec.org/r/eee/proeco/v70y2001i2p163-174.html
   My bibliography  Save this item

Forecasting practices of Canadian firms: Survey results and comparisons

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
  2. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
  3. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
  4. Goodwin, Paul, 2002. "Integrating management judgment and statistical methods to improve short-term forecasts," Omega, Elsevier, vol. 30(2), pages 127-135, April.
  5. Youssef Boulaksil & Philip Hans Franses, 2009. "Experts' Stated Behavior," Interfaces, INFORMS, vol. 39(2), pages 168-171, April.
    • Boulaksil, Y. & Franses, Ph.H.B.F., 2008. "Experts' Stated Behavior," ERIM Report Series Research in Management ERS-2008-001-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  6. Kalchschmidt, Matteo, 2012. "Best practices in demand forecasting: Tests of universalistic, contingency and configurational theories," International Journal of Production Economics, Elsevier, vol. 140(2), pages 782-793.
  7. Boutselis, Petros & McNaught, Ken, 2019. "Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context," International Journal of Production Economics, Elsevier, vol. 209(C), pages 325-333.
  8. Franses, Philip Hans & Legerstee, Rianne, 2009. "Properties of expert adjustments on model-based SKU-level forecasts," International Journal of Forecasting, Elsevier, vol. 25(1), pages 35-47.
  9. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
  10. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
  11. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The role of the forecasting process in improving forecast accuracy and operational performance," International Journal of Production Economics, Elsevier, vol. 131(1), pages 204-214, May.
  12. Syntetos, Aris A. & Kholidasari, Inna & Naim, Mohamed M., 2016. "The effects of integrating management judgement into OUT levels: In or out of context?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 853-863.
  13. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael, 2014. "Collaborative forecasting in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 158(C), pages 120-135.
  14. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
  15. Widiarta, Handik & Viswanathan, S. & Piplani, Rajesh, 2009. "Forecasting aggregate demand: An analytical evaluation of top-down versus bottom-up forecasting in a production planning framework," International Journal of Production Economics, Elsevier, vol. 118(1), pages 87-94, March.
  16. Goodwin, Paul & Önkal, Dilek & Thomson, Mary, 2010. "Do forecasts expressed as prediction intervals improve production planning decisions?," European Journal of Operational Research, Elsevier, vol. 205(1), pages 195-201, August.
  17. Francesco PAOLONE, 2014. "Cost Structure Complexity And Stock Prices Volatility: An Analysis Of Possible Relationship Among Italian Listed Companies In The Period Of Crisis," Romanian Journal of Economics, Institute of National Economy, vol. 38(1(47)), pages 107-133, June.
  18. Zotteri, Giulio & Kalchschmidt, Matteo, 2007. "Forecasting practices: Empirical evidence and a framework for research," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 84-99, July.
  19. Lin, Vera Shanshan & Goodwin, Paul & Song, Haiyan, 2014. "Accuracy and bias of experts’ adjusted forecasts," Annals of Tourism Research, Elsevier, vol. 48(C), pages 156-174.
  20. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.
  21. Leitner, Johannes & Schmidt, Robert & Bofinger, Peter, 2003. "Biases of professional exchange rate forecasts: Psychological explanations and an experimentally based comparison to novices," W.E.P. - Würzburg Economic Papers 39, University of Würzburg, Department of Economics.
  22. Donna F. Davis & John T. Mentzer & Teresa M. Mccarthy & Susan L. Golicic, 2006. "The evolution of sales forecasting management: a 20-year longitudinal study of forecasting practices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 303-324.
  23. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
  24. Goodwin, Paul & Gönül, M. Sinan & Önkal, Dilek, 2019. "When providing optimistic and pessimistic scenarios can be detrimental to judgmental demand forecasts and production decisions," European Journal of Operational Research, Elsevier, vol. 273(3), pages 992-1004.
  25. Matteo Kalchschmidt, 2011. "Best practices in demand forecasting: tests of Universalistic, contingency and configurational theories," Working Papers 1102, Department of Management, Information and Production Engineering, University of Bergamo.
  26. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
  27. F Caniato & M Kalchschmidt & S Ronchi, 2011. "Integrating quantitative and qualitative forecasting approaches: organizational learning in an action research case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 413-424, March.
  28. Christiane B. Haubitz & Cedric A. Lehmann & Andreas Fügener & Ulrich W. Thonemann, 2021. "The Risk of Algorithm Transparency: How Algorithm Complexity Drives the Effects on Use of Advice," ECONtribute Discussion Papers Series 078, University of Bonn and University of Cologne, Germany.
  29. Eroglu, Cuneyt & Croxton, Keely L., 2010. "Biases in judgmental adjustments of statistical forecasts: The role of individual differences," International Journal of Forecasting, Elsevier, vol. 26(1), pages 116-133, January.
  30. Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.