My bibliography
Save this item
Lumpy demand forecasting using neural networks
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Gu, Jing & Shi, Xinyu & Wang, Junyao & Xu, Xun, 2024. "Examining the impact of market power discrepancy between supply chain partners on firm financial performance," International Journal of Production Economics, Elsevier, vol. 268(C).
- Kamal Sanguri & Kampan Mukherjee, 2021. "Forecasting of intermittent demands under the risk of inventory obsolescence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1054-1069, September.
- Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
- van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
- Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
- G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
- Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
- UÄŸur Åžener & Salvatore Joseph Terregrossa, 2024. "A Transcendental LASSO Function for Combining Machine Learning and Statistical Model Forecasts," SAGE Open, , vol. 14(3), pages 21582440241, August.
- Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
- Hasni, M. & Aguir, M.S. & Babai, M.Z. & Jemai, Z., 2019. "On the performance of adjusted bootstrapping methods for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 216(C), pages 145-153.
- Ali Caner Türkmen & Tim Januschowski & Yuyang Wang & Ali Taylan Cemgil, 2021. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-26, November.
- Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
- Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
- Aysun Kapucugil Ikiz & Gizem Halil Utma, 2023. "Combined Forecasts of Intermittent Demand for Stock-keeping Units (SKUs)," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 9(1), pages 1-31, June.
- Anderer, Matthias & Li, Feng, 2022. "Hierarchical forecasting with a top-down alignment of independent-level forecasts," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1405-1414.
- Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
- Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
- Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
- Nikolopoulos, Konstantinos I. & Babai, M. Zied & Bozos, Konstantinos, 2016. "Forecasting supply chain sporadic demand with nearest neighbor approaches," International Journal of Production Economics, Elsevier, vol. 177(C), pages 139-148.
- Wagner, Stephan M. & Neshat, Nikrouz, 2010. "Assessing the vulnerability of supply chains using graph theory," International Journal of Production Economics, Elsevier, vol. 126(1), pages 121-129, July.
- Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
- Prak, Dennis & Rogetzer, Patricia, 2022. "Timing intermittent demand with time-varying order-up-to levels," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1126-1136.
- Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
- Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
- Heinecke, G. & Syntetos, A.A. & Wang, W., 2013. "Forecasting-based SKU classification," International Journal of Production Economics, Elsevier, vol. 143(2), pages 455-462.
- Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
- Costantino, Francesco & Di Gravio, Giulio & Patriarca, Riccardo & Petrella, Lea, 2018. "Spare parts management for irregular demand items," Omega, Elsevier, vol. 81(C), pages 57-66.
- Dimitrova, Dimitrina S. & Ignatov, Zvetan G. & Kaishev, Vladimir K. & Tan, Senren, 2020. "On double-boundary non-crossing probability for a class of compound processes with applications," European Journal of Operational Research, Elsevier, vol. 282(2), pages 602-613.
- Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
- A A Syntetos & M Z Babai & Y Dallery & R Teunter, 2009. "Periodic control of intermittent demand items: theory and empirical analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 611-618, May.
- Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
- Syntetos, A.A. & Babai, M.Z. & Davies, J. & Stephenson, D., 2010. "Forecasting and stock control: A study in a wholesaling context," International Journal of Production Economics, Elsevier, vol. 127(1), pages 103-111, September.
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- Hasni, M. & Babai, M.Z. & Aguir, M.S. & Jemai, Z., 2019. "An investigation on bootstrapping forecasting methods for intermittent demands," International Journal of Production Economics, Elsevier, vol. 209(C), pages 20-29.
- Gary Mitchell & Meike Niederhausen, 2010. "On Replenishing Items with Seasonal Intermittent Demand," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 90-102, March.
- Jiayun Wang & Shanshan Wu & Qingwei Jin & Yijun Wang & Can Chen, 2024. "Identifying Popular Products at an Early Stage of Sales Season for Apparel Industry," Interfaces, INFORMS, vol. 54(3), pages 282-296, May.