My bibliography
Save this item
Option price forecasting using neural networks
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
- Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
- Carl Remlinger & Bri`ere Marie & Alasseur Cl'emence & Joseph Mikael, 2021. "Expert Aggregation for Financial Forecasting," Papers 2111.15365, arXiv.org, revised Jul 2023.
- Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
- Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
- Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
- Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Yi-Hsien Wang, 2009. "Using neural network to forecast stock index option price: a new hybrid GARCH approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 833-843, September.
- Chen Zhang, 2022. "Asset Pricing and Deep Learning," Papers 2209.12014, arXiv.org.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019.
"Pricing Options and Computing Implied Volatilities using Neural Networks,"
Risks, MDPI, vol. 7(1), pages 1-22, February.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing options and computing implied volatilities using neural networks," Papers 1901.08943, arXiv.org, revised Apr 2019.
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
- Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020.
"Artificial intelligence in asset management,"
Working Papers
20202001, Cambridge Judge Business School, University of Cambridge.
- Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
- Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020.
"Neural Network Pricing of American Put Options,"
Risks, MDPI, vol. 8(3), pages 1-24, July.
- Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network pricing of American put options," Working Papers REM 2020/0122, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- David Liu & An Wei, 2022. "Regulated LSTM Artificial Neural Networks for Option Risks," FinTech, MDPI, vol. 1(2), pages 1-11, June.
- Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
- Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.
- Efe Arin & A. Murat Ozbayoglu, 2022. "Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 39-58, January.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Mark T. Leung & An‐Sing Chen & Ruben Mancha, 2009. "Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(4), pages 257-277, October.
- Alois Weigand, 2019. "Machine learning in empirical asset pricing," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(1), pages 93-104, March.
- Marcos Vizcaíno-González & Juan Pineiro-Chousa & Jorge Sáinz-González, 2017. "Selecting explanatory factors of voting decisions by means of fsQCA and ANN," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2049-2061, September.
- Hwarng, H. Brian & Ang, H. T., 2001. "A simple neural network for ARMA(p,q) time series," Omega, Elsevier, vol. 29(4), pages 319-333, August.
- Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
- Anindya Goswami & Sharan Rajani & Atharva Tanksale, 2020. "Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning," Papers 2008.00462, arXiv.org, revised Dec 2020.
- Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
- Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2017.
"Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options,"
Central European Economic Journal, Sciendo, vol. 4(51), pages 18-39, December.
- Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2017. "Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options," Central European Economic Journal, Sciendo, vol. 4(51), pages 18-39.
- Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
- Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
- Nawaf Almaskati, 2022. "Machine learning in finance: Major applications, issues, metrics, and future trends," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-32, September.
- Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.
- Daniela Carlucci & Paolo Renna & Giovanni Schiuma, 2013. "Evaluating service quality dimensions as antecedents to outpatient satisfaction using back propagation neural network," Health Care Management Science, Springer, vol. 16(1), pages 37-44, March.
- Saadet Eskiizmirliler & Korhan Günel & Refet Polat, 2021. "On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 915-941, October.
- Ghaffari, Ali & Zare, Samaneh, 2009. "A novel algorithm for prediction of crude oil price variation based on soft computing," Energy Economics, Elsevier, vol. 31(4), pages 531-536, July.
- Panayiotis Andreou & Chris Charalambous & Spiros Martzoukos, 2006. "Robust Artificial Neural Networks for Pricing of European Options," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 329-351, May.
- Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
- Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
- Lahmiri, Salim, 2017. "Modeling and predicting historical volatility in exchange rate markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 387-395.
- Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
- Ioannidis, Christos & Pasiouras, Fotios & Zopounidis, Constantin, 2010. "Assessing bank soundness with classification techniques," Omega, Elsevier, vol. 38(5), pages 345-357, October.
- Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.