My bibliography
Save this item
The distance correlation t-test of independence in high dimension
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yongshuai Chen & Wenwen Guo & Hengjian Cui, 2024. "On the test of covariance between two high-dimensional random vectors," Statistical Papers, Springer, vol. 65(5), pages 2687-2717, July.
- S Gorsky & L Ma, 2022. "Multi-scale Fisher’s independence test for multivariate dependence [A simple measure of conditional dependence]," Biometrika, Biometrika Trust, vol. 109(3), pages 569-587.
- Lingyun, Guo & Markus, Niffenegger & Jing, Zhou, 2022. "A novel procedure to evaluate the performance of failure assessment models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Brugnago, Eduardo L. & da Silva, Rafael M. & Manchein, Cesar & Beims, Marcus W., 2020. "How relevant is the decision of containment measures against COVID-19 applied ahead of time?," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Górecki Tomasz & Krzyśko Mirosław & Ratajczak Waldemar & Wołyński Waldemar, 2016. "An Extension of the Classical Distance Correlation Coefficient for Multivariate Functional Data with Applications," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 449-466, September.
- Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
- Mirosław Krzyśko & Tomasz Górecki & Waldemar Wołyński & Waldemar Ratajczak, 2016. "An Extension of the Classical Distance Correlation Coefficient for Multivariate Functional Data with Applications," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 449-466, September.
- Qiu, Tao & Xu, Wangli & Zhu, Lixing, 2023. "Independence tests with random subspace of two random vectors in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- Tomasz Górecki & Mirosław Krzy´sko & Waldemar Ratajczak & Waldemar Woły´nski, 2016. "An Extension Of The Classical Distance Correlation Coefficient For Multivariate Functional Data With Applications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 449-466, September.
- J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
- Simos G. Meintanis & Joseph Ngatchou-Wandji & James Allison, 2018. "Testing for serial independence in vector autoregressive models," Statistical Papers, Springer, vol. 59(4), pages 1379-1410, December.
- Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
- Mirosław Krzyśko & Łukasz Smaga, 2024. "Application of distance standard deviation in functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 431-454, June.
- Qunlun Shen & Shihua Zhang, 2021. "Approximate distance correlation for selecting highly interrelated genes across datasets," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-18, November.
- Matsui, Muneya & Mikosch, Thomas & Roozegar, Rasool & Tafakori, Laleh, 2022. "Distance covariance for random fields," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 280-322.
- Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2020. "Testing for independence of high-dimensional variables: ρV-coefficient based approach," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
- Tomasz Górecki & Mirosław Krzyśko & Waldemar Wołyński, 2019. "Variable Selection In Multivariate Functional Data Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 123-138, June.
- Jun Li, 2018. "Asymptotic normality of interpoint distances for high-dimensional data with applications to the two-sample problem," Biometrika, Biometrika Trust, vol. 105(3), pages 529-546.
- Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
- Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
- Shang, Du & Shang, Pengjian, 2022. "The dependence measurements based on martingale difference correlation and distance correlation: Efficient tools to distinguish different complex systems," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Górecki Tomasz & Krzyśko Mirosław & ński Waldemar Woły, 2019. "Variable Selection In Multivariate Functional Data Classification," Statistics in Transition New Series, Statistics Poland, vol. 20(2), pages 123-138, June.
- Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
- Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.
- Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Dueck, Johannes & Edelmann, Dominic & Richards, Donald, 2015. "A generalization of an integral arising in the theory of distance correlation," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 116-119.
- Dueck, Johannes & Edelmann, Dominic & Richards, Donald, 2017. "Distance correlation coefficients for Lancaster distributions," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 19-39.
- Horváth, Lajos & Rice, Gregory, 2015. "Testing for independence between functional time series," Journal of Econometrics, Elsevier, vol. 189(2), pages 371-382.
- Teran Hidalgo, Sebastian J. & Wu, Michael C. & Engel, Stephanie M. & Kosorok, Michael R., 2018. "Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 135-155.
- Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.
- Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.