IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v110y2012icp133-150.html
   My bibliography  Save this item

Likelihood inference for Archimedean copulas in high dimensions under known margins

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hofert, Marius & Pham, David, 2013. "Densities of nested Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 37-52.
  2. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
  3. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
  4. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.
  5. David Gunawan & William Griffiths & Duangkamon Chotikapanich, 2024. "Bayesian Inference for Multidimensional Welfare Comparisons," Papers 2406.13395, arXiv.org.
  6. Woraphon Yamaka & Rangan Gupta & Sukrit Thongkairat & Paravee Maneejuk, 2023. "Structural and predictive analyses with a mixed copula‐based vector autoregression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 223-239, March.
  7. Balak, Sima & Behzadi, Mohammad Hassan & Nazari, Ali, 2021. "Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 326-341.
  8. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
  9. Hofert, Marius & Vrins, Frédéric, 2013. "Sibuya copulas," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 318-337.
  10. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  11. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
  12. Ames, Matthew & Bagnarosa, Guillaume & Peters, Gareth W., 2017. "Violations of uncovered interest rate parity and international exchange rate dependences," Journal of International Money and Finance, Elsevier, vol. 73(PA), pages 162-187.
  13. Peters, Gareth W. & Dong, Alice X.D. & Kohn, Robert, 2014. "A copula based Bayesian approach for paid–incurred claims models for non-life insurance reserving," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 258-278.
  14. Mai Jan-Frederik & Scherer Matthias, 2013. "What makes dependence modeling challenging? Pitfalls and ways to circumvent them," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 287-306, December.
  15. Jens Stange & Taras Bodnar & Thorsten Dickhaus, 2015. "Uncertainty quantification for the family-wise error rate in multivariate copula models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 281-310, July.
  16. Eckhard Liebscher, 2024. "Fitting copulas in the case of missing data," Statistical Papers, Springer, vol. 65(6), pages 3681-3711, August.
  17. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
  18. Włodzimierz Wysocki, 2015. "Kendall's tau and Spearman's rho for n -dimensional Archimedean copulas and their asymptotic properties," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 442-459, December.
  19. Zhang, Kong-Sheng & Lin, Jin-Guan & Xu, Pei-Rong, 2016. "A new class of copulas involving geometric distribution: Estimation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 1-10.
  20. Amjad, Muhammad & Akbar, Muhammad & Ullah, Hamd, 2022. "A copula-based approach for creating an index of micronutrient intakes at household level in Pakistan," Economics & Human Biology, Elsevier, vol. 46(C).
  21. Hofert, Marius, 2021. "Right-truncated Archimedean and related copulas," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 79-91.
  22. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
  23. Matthew Ames & Guillaume Bagnarosa & Gareth W. Peters, 2013. "Reinvestigating the Uncovered Interest Rate Parity Puzzle via Analysis of Multivariate Tail Dependence in Currency Carry Trades," Papers 1303.4314, arXiv.org, revised Jan 2014.
  24. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
  25. Ulf Schepsmeier & Jakob Stöber, 2014. "Derivatives and Fisher information of bivariate copulas," Statistical Papers, Springer, vol. 55(2), pages 525-542, May.
  26. Holzer, Jorge & Olson, Lars J., 2021. "Precautionary buffers and stochastic dependence in environmental policy," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
  27. Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.