IDEAS home Printed from https://ideas.repec.org/r/eee/jfinec/v133y2019i2p299-336.html
   My bibliography  Save this item

How news and its context drive risk and returns around the world

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fang, Yi & Wang, Qi & Wang, Yanru & Yuan, Yan, 2024. "Media sentiment, deposit stability and bank systemic risk: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 1150-1172.
  2. Ali Kabiri & Harold James & John Landon-Lane & David Tuckett & Rickard Nyman, 2020. "The Role of Sentiment in the Economy: 1920 to 1934," CESifo Working Paper Series 8336, CESifo.
  3. Aguilar, Pablo & Ghirelli, Corinna & Pacce, Matías & Urtasun, Alberto, 2021. "Can news help measure economic sentiment? An application in COVID-19 times," Economics Letters, Elsevier, vol. 199(C).
  4. Chinmoy Ghosh & Cristian Pinto‐Gutiérrez & Jaideep Shenoy, 2024. "Does negative news disclosure induce better decision‐making? Evidence from acquisitions," The Financial Review, Eastern Finance Association, vol. 59(2), pages 325-372, May.
  5. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
  6. Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
  7. Jin, Xuejun & Chen, Cheng & Yang, Xiaolan, 2024. "The effect of international media news on the global stock market," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 50-69.
  8. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
  9. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
  10. Charles W. Calomiris & Harry Mamaysky, 2019. "Monetary Policy and Exchange Rate Returns: Time-Varying Risk Regimes," NBER Working Papers 25714, National Bureau of Economic Research, Inc.
  11. Walker, Clive B., 2024. "Going mainstream: Cryptocurrency narratives in newspapers," International Review of Financial Analysis, Elsevier, vol. 94(C).
  12. Kamal, Javed Bin & Wohar, Mark, 2023. "Heterogenous responses of stock markets to covid related news and sentiments: Evidence from the 1st year of pandemic," International Economics, Elsevier, vol. 173(C), pages 68-85.
  13. Yang, Shanxiang & Liu, Zhechen & Wang, Xinjie, 2020. "News sentiment, credit spreads, and information asymmetry," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
  14. Charles W. Calomiris & Mauricio Larrain & Sergio L. Schmukler & Tomas Williams, 2019. "Search for Yield in Large International Corporate Bonds: Investor Behavior and Firm Responses," NBER Working Papers 25979, National Bureau of Economic Research, Inc.
  15. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
  16. Axel Groß-Klußmann, 2024. "Learning deep news sentiment representations for macro-finance," Digital Finance, Springer, vol. 6(3), pages 341-377, September.
  17. Adam Zaremba, 2019. "The Cross Section of Country Equity Returns: A Review of Empirical Literature," JRFM, MDPI, vol. 12(4), pages 1-26, October.
  18. Antonios Persakis, 2024. "The impact of climate policy uncertainty on ESG performance, carbon emission intensity and firm performance: evidence from Fortune 1000 firms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24031-24081, September.
  19. Hou, Xiaohui & Yang, Rui, 2021. "Policy signaling and stock price synchronicity: Evidence from China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
  20. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers 2023-19, CEPII research center.
  21. Juanjuan Wang & Shujie Zhou & Wentong Liu & Lin Jiang, 2024. "An ensemble model for stock index prediction based on media attention and emotional causal inference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1998-2020, September.
  22. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  23. Liang, Qi & Sun, Wenjia & Li, Wenyu & Yu, Fengyan, 2021. "Media effects matter: Macroeconomic announcements in the gold futures market," Economic Modelling, Elsevier, vol. 96(C), pages 1-12.
  24. Jing Li & Daniel Shapiro & Anastasia Ufimtseva, 2024. "Regulating inbound foreign direct investment in a world of hegemonic rivalry: the evolution and diffusion of US policy," Journal of International Business Policy, Palgrave Macmillan, vol. 7(2), pages 147-165, June.
  25. Aleksanyan, Mark & Danbolt, Jo & Siganos, Antonios & Wu, Betty (H.T.), 2022. "I only fear when I hear: How media affects insider trading in takeover targets," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 318-342.
  26. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
  27. Bai, Chenjiang & Duan, Yuejiao & Liu, Congya & Qiu, Leiju, 2022. "International taxation sentiment and COVID-19 crisis," Research in International Business and Finance, Elsevier, vol. 63(C).
  28. Loic Mar'echal & Nathan Monnet, 2024. "Disentangling the sources of cyber risk premia," Papers 2409.08728, arXiv.org.
  29. Ali Kabiri & Harold James & John Landon‐Lane & David Tuckett & Rickard Nyman, 2023. "The role of sentiment in the US economy: 1920 to 1934," Economic History Review, Economic History Society, vol. 76(1), pages 3-30, February.
  30. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
  31. Mengyu Wang & Shay B. Cohen & Tiejun Ma, 2024. "Modeling News Interactions and Influence for Financial Market Prediction," Papers 2410.10614, arXiv.org.
  32. Geng, Yuedan & Ye, Qiang & Jin, Yu & Shi, Wen, 2022. "Crowd wisdom and internet searches: What happens when investors search for stocks?," International Review of Financial Analysis, Elsevier, vol. 82(C).
  33. Łukasz Baszczak, 2023. "Ekonomia narracji – początki nowego nurtu," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 1, pages 66-81.
  34. Nida Çakır Melek & Charles W. Calomiris & Harry Mamaysky, 2020. "Mining for Oil Forecasts," Research Working Paper RWP 20-20, Federal Reserve Bank of Kansas City.
  35. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
  36. Ma, Feng & Lyu, Zhichong & Li, Haibo, 2024. "Can ChatGPT predict Chinese equity premiums?," Finance Research Letters, Elsevier, vol. 65(C).
  37. Huang, Tao & Zhang, Xueyong, 2022. "Industry-level media tone and the cross-section of stock returns," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 59-77.
  38. Charles W. Calomiris & Nida Çakır Melek & Harry Mamaysky, 2021. "Predicting the Oil Market," NBER Working Papers 29379, National Bureau of Economic Research, Inc.
  39. Bertsch, Christoph & Hull, Isaiah & Zhang, Xin, 2021. "Narrative fragmentation and the business cycle," Economics Letters, Elsevier, vol. 201(C).
  40. Travis Adams & Andrea Ajello & Diego Silva & Francisco Vazquez-Grande, 2023. "More than Words: Twitter Chatter and Financial Market Sentiment," Papers 2305.16164, arXiv.org.
  41. Michael D. Wang & Jie Lou & Dong Zhang & C. Simon Fan, 2022. "Measuring political and economic uncertainty: a supervised computational linguistic approach," SN Business & Economics, Springer, vol. 2(5), pages 1-17, May.
  42. Guzmán, Alexander & Mehrotra, Vikas & Morck, Randall & Trujillo, María-Andrea, 2020. "How institutional development news moves an emerging market," Journal of Business Research, Elsevier, vol. 112(C), pages 300-319.
  43. Paul E. Soto, 2021. "Breaking the Word Bank: Measurement and Effects of Bank Level Uncertainty," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(1), pages 1-45, April.
  44. Feipeng Zhang & Yun Hong & Yanhui Jiang & Jiayi Yu, 2022. "Impact of national media reporting concerning COVID-19 on stock market in China: empirical evidence from a quantile regression," Applied Economics, Taylor & Francis Journals, vol. 54(33), pages 3861-3881, July.
  45. Ahmed, Walid M.A., 2020. "Stock market reactions to domestic sentiment: Panel CS-ARDL evidence," Research in International Business and Finance, Elsevier, vol. 54(C).
  46. Muhammad Ateeq ur REHMAN & Syed Ghulam Meran SHAH & Lucian-Ionel CIOCA & Alin ARTENE, 2021. "Accentuating the Impacts of Political News on the Stock Price, Working Capital and Performance: An Empirical Review of Emerging Economy," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 55-73, June.
  47. Alistair Macaulay & Wenting Song, 2022. "Narrative-Driven Fluctuations in Sentiment: Evidence Linking Traditional and Social Media," Economics Series Working Papers 973, University of Oxford, Department of Economics.
  48. Yong Ma & Lu Yan & Dongtao Pan, 2024. "The power of news data in forecasting tail risk: evidence from China," Empirical Economics, Springer, vol. 67(6), pages 2607-2642, December.
  49. Andrea Ajello & Diego Silva & Travis Adams & Francisco Vazquez-Grande, 2023. "More than Words: Twitter Chatter and Financial Market Sentiment," Finance and Economics Discussion Series 2023-034, Board of Governors of the Federal Reserve System (U.S.).
  50. Ka Kit Tang & Ka Ching Li & Mike K P So, 2021. "Predicting standardized absolute returns using rolling-sample textual modelling," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-28, December.
  51. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
  52. Möller, Rouven & Reichmann, Doron, 2023. "COVID-19 related TV news and stock returns: Evidence from major US TV stations," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 95-109.
  53. Michael Curran & Adnan Velic, 2020. "The CAPM, National Stock Market Betas, and Macroeconomic Covariates: a Global Analysis," Open Economies Review, Springer, vol. 31(4), pages 787-820, September.
  54. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
  55. Hong, Yun & Jiang, Yanhui & Su, Xiaojian & Deng, Chao, 2024. "Extreme state media reporting and the extreme stock market during COVID-19: A multi-quantile VaR Granger causality approach in China," Research in International Business and Finance, Elsevier, vol. 67(PA).
  56. Danilo Vassallo & Giacomo Bormetti & Fabrizio Lillo, 2019. "A tale of two sentiment scales: Disentangling short-run and long-run components in multivariate sentiment dynamics," Papers 1910.01407, arXiv.org, revised Sep 2020.
  57. Durand, Robert B. & Khuu, Joyce & Smales, Lee A., 2023. "Lost in translation. When sentiment metrics for one market are derived from two different languages," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
  58. Jia, Zhehao & Li, Donghui & Shi, Yukun & Xing, Lu, 2023. "Firm-level media news, bank loans, and the role of institutional environments," Journal of Corporate Finance, Elsevier, vol. 83(C).
  59. Sharpe, Steven A. & Sinha, Nitish R. & Hollrah, Christopher A., 2023. "The power of narrative sentiment in economic forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1097-1121.
  60. Chen, Sipeng & Li, Gang, 2023. "Why does option-implied volatility forecast realized volatility? Evidence from news events," Journal of Banking & Finance, Elsevier, vol. 156(C).
  61. Charles W. Calomiris & Harry Mamaysky & Ruoke Yang, 2020. "Measuring the Cost of Regulation: A Text-Based Approach," NBER Working Papers 26856, National Bureau of Economic Research, Inc.
  62. Daniel Borup & Jorge Wolfgang Hansen & Benjamin Dybro Liengaard & Erik Christian Montes Schütte, 2023. "Quantifying investor narratives and their role during COVID‐19," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 512-532, June.
  63. Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
  64. Alejandro Bernales & Marcela Valenzuela & Ilknur Zer, 2023. "Effects of Information Overload on Financial Markets: How Much Is Too Much?," International Finance Discussion Papers 1372, Board of Governors of the Federal Reserve System (U.S.).
  65. Bai, Xiwen & Lam, Jasmine Siu Lee & Jakher, Astha, 2021. "Shipping sentiment and the dry bulk shipping freight market: New evidence from newspaper coverage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
  66. Park, Dojoon & Kang, Yong Joo & Eom, Young Ho, 2024. "Asset pricing tests for pandemic risk," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1314-1334.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.