IDEAS home Printed from https://ideas.repec.org/r/eee/jbfina/v89y2018icp14-25.html
   My bibliography  Save this item

Macroeconomic variable selection for creditor recovery rates

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
  2. Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019. "Recovery rates: Uncertainty certainly matters," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 371-383.
  3. Elyasiani, Elyas & Movaghari, Hadi, 2022. "Determinants of corporate cash holdings: An application of a robust variable selection technique," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 967-993.
  4. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
  5. Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," Risks, MDPI, vol. 10(6), pages 1-29, June.
  6. Volha Audzei & Sergey Slobodyan, 2024. "Dynamic Sparse Restricted Perceptions Equilibria," CERGE-EI Working Papers wp792, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  7. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
  8. Barbagli, Matteo & François, Pascal & Gauthier, Geneviève & Vrins, Frédéric, 2024. "The role of CDS spreads in explaining bond recovery rates," LIDAM Discussion Papers LFIN 2024002, Université catholique de Louvain, Louvain Finance (LFIN).
  9. Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
  10. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
  11. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  12. Sohrabi, Narges & Movaghari, Hadi, 2020. "Reliable factors of Capital structure: Stability selection approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 296-310.
  13. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
  14. Jochen Güntner & Benjamin Karner, 2023. "The bond agio premium," Economics working papers 2023-13, Department of Economics, Johannes Kepler University Linz, Austria.
  15. Maria Carannante & Valeria D’Amato & Paola Fersini & Salvatore Forte & Giuseppe Melisi, 2024. "Machine learning due diligence evaluation to increase NPLs profitability transactions on secondary market," Review of Managerial Science, Springer, vol. 18(7), pages 1963-1983, July.
  16. Lucey, Brian & Urquhart, Andrew & Zhang, Hanxiong, 2022. "UK Vice Chancellor compensation: Do they get what they deserve?," The British Accounting Review, Elsevier, vol. 54(4).
  17. Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
  18. Alan Tidwell & Yan (Olivia) Lu & Junsoo Lee & Piyali Banerjee, 2023. "Nature of comovements in US state and MSA housing prices," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(4), pages 959-989, July.
  19. Distaso, Walter & Roccazzella, Francesco & Vrins, Frédéric, 2023. "Business cycle and realized losses in the consumer credit industry," LIDAM Discussion Papers LFIN 2023007, Université catholique de Louvain, Louvain Finance (LFIN).
  20. Sopitpongstorn, Nithi & Silvapulle, Param & Gao, Jiti & Fenech, Jean-Pierre, 2021. "Local logit regression for loan recovery rate," Journal of Banking & Finance, Elsevier, vol. 126(C).
  21. Xing, Kai & Luo, Dan & Liu, Lanlan, 2023. "Macroeconomic conditions, corporate default, and default clustering," Economic Modelling, Elsevier, vol. 118(C).
  22. Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
  23. Jean‐François Bégin & Mathieu Boudreault & Mathieu Thériault, 2024. "Leveraging prices from credit and equity option markets for portfolio risk management," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(1), pages 122-147, January.
  24. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
  25. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
  26. Hui-Ching Chuang & Jau-er Chen, 2023. "Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles," Econometrics, MDPI, vol. 11(1), pages 1-20, February.
  27. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.