My bibliography
Save this item
Top-down or bottom-up: Aggregate versus disaggregate extrapolations
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Spithourakis, Georgios P. & Petropoulos, Fotios & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2015. "Amplifying the learning effects via a Forecasting and Foresight Support System," International Journal of Forecasting, Elsevier, vol. 31(1), pages 20-32.
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Chun-Cheng Lin & Rou-Xuan He & Wan-Yu Liu, 2018. "Considering Multiple Factors to Forecast CO 2 Emissions: A Hybrid Multivariable Grey Forecasting and Genetic Programming Approach," Energies, MDPI, vol. 11(12), pages 1-25, December.
- Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
- Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
- Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
- Kamel Jlassi, 2015. "Modelling and Forecasting of Tunisian Current Account: Aggregate versus Disaggregate Approach," IHEID Working Papers 13-2015, Economics Section, The Graduate Institute of International Studies.
- Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
- Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
- Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Pierfrancesco Alaimo Di Loro & Daria Scacciatelli & Giovanna Tagliaferri, 2023. "2-step Gradient Boosting approach to selectivity bias correction in tax audit: an application to the VAT gap in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 237-270, March.
- Widiarta, Handik & Viswanathan, S. & Piplani, Rajesh, 2009. "Forecasting aggregate demand: An analytical evaluation of top-down versus bottom-up forecasting in a production planning framework," International Journal of Production Economics, Elsevier, vol. 118(1), pages 87-94, March.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Aljuneidi, Tariq & Punia, Sushil & Jebali, Aida & Nikolopoulos, Konstantinos, 2024. "Forecasting and planning for a critical infrastructure sector during a pandemic: Empirical evidence from a food supply chain," European Journal of Operational Research, Elsevier, vol. 317(3), pages 936-952.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Moon, Seongmin & Simpson, Andrew & Hicks, Christian, 2013. "The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand," International Journal of Production Economics, Elsevier, vol. 143(2), pages 449-454.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
- Sbrana, Giacomo & Silvestrini, Andrea, 2013.
"Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework,"
International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
- Giacomo Sbrana & Andrea Silvestrini, 2013. "Forecasting aggregate demand: analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," Temi di discussione (Economic working papers) 929, Bank of Italy, Economic Research and International Relations Area.
- J. Scott Armstrong & Kesten C. Green, 2005. "Demand Forecasting: Evidence-based Methods," Monash Econometrics and Business Statistics Working Papers 24/05, Monash University, Department of Econometrics and Business Statistics.
- Chen, Argon & Blue, Jakey, 2010. "Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands," International Journal of Production Economics, Elsevier, vol. 128(2), pages 586-602, December.
- Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
- Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Shin-Lian Lo & Fu-Kwun Wang & James T. Lin, 2008. "Forecasting for the LCD monitor market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 341-356.
- Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009.
"Hierarchical forecasts for Australian domestic tourism,"
International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
- George Athanasopoulos & Roman A. Ahmed & Rob J. Hyndman, 2007. "Hierarchical forecasts for Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 12/07, Monash University, Department of Econometrics and Business Statistics, revised Nov 2007.
- Monterrey Mayoral, Juan & Sánchez Segura, Amparo, 2017. "Una evaluación empírica de los métodos de predicción de la rentabilidad y su relación con las características corporativas," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 20(1), pages 95-106.
- Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
- da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
- Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
- H Chen & J E Boylan, 2007. "Use of individual and group seasonal indices in subaggregate demand forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1660-1671, December.
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Paula M. Murray & Yusuf A. Shalaby & Luciano Ieraci & Emmett Borg & Daphne Sniekers & Ali Vahit Esensoy & Jessica Arias, 2020. "Forecasting Ontario Oncology Drug Expenditures: A Hybrid Approach to Improving Accuracy," Applied Health Economics and Health Policy, Springer, vol. 18(1), pages 127-137, February.