IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v31y2015i1p144-154.html
   My bibliography  Save this item

Information rigidities: Comparing average and individual forecasts for a large international panel

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Constantin Bürgi & Julio L. Ortiz, 2022. "Overreaction through Anchoring," CESifo Working Paper Series 10193, CESifo.
  2. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
  3. Frédérique BEC, 2017. "Why are inflation forecasts sticky?," THEMA Working Papers 2017-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  4. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
  5. de Mendonça, Helder Ferreira & Vereda, Luciano & Araujo, Mateus de Azevedo, 2022. "What type of information calls the attention of forecasters? Evidence from survey data in an emerging market," Journal of International Money and Finance, Elsevier, vol. 129(C).
  6. Frédérique Bec & Raouf Boucekkine & Caroline Jardet, 2023. "Why Are Inflation Forecasts Sticky? Theory and Application to France and Germany," International Journal of Central Banking, International Journal of Central Banking, vol. 19(4), pages 215-249, October.
  7. Laura Carabotta & Peter Claeys, 2024. "Combine to compete: Improving fiscal forecast accuracy over time," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 948-982, July.
  8. Diana Gabrielyan & Lenno Uusküla, 2022. "Inflation Expectations And Consumption With Machine Learning," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 142, Faculty of Economics and Business Administration, University of Tartu (Estonia).
  9. Chen, Qiwei & Costantini, Mauro & Deschamps, Bruno, 2016. "How accurate are professional forecasts in Asia? Evidence from ten countries," International Journal of Forecasting, Elsevier, vol. 32(1), pages 154-167.
  10. Alexandre Kohlhas, 2018. "Asymmetric Attention," 2018 Meeting Papers 1040, Society for Economic Dynamics.
  11. Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
  12. Reslow, André, 2019. "Inefficient Use of Competitors'Forecasts?," Working Paper Series 380, Sveriges Riksbank (Central Bank of Sweden).
  13. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
  14. Anthony Garratt & Kevin Lee & Kalvinder Shields, 2018. "The role of uncertainty, sentiment and cross-country interactions in G7 output dynamics," Canadian Journal of Economics, Canadian Economics Association, vol. 51(2), pages 391-418, May.
  15. Jonas Dovern & Matthias Hartmann, 2017. "Forecast performance, disagreement, and heterogeneous signal-to-noise ratios," Empirical Economics, Springer, vol. 53(1), pages 63-77, August.
  16. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
  17. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
  18. Yingying Xu & Zhixin Liu & Zichao Jia & Chi-Wei Su, 2017. "Is time-variant information stickiness state-dependent?," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(3), pages 169-187, December.
  19. Broer, Tobias & Kohlhas, Alexandre, 2018. "Forecaster (Mis-)Behavior," CEPR Discussion Papers 12898, C.E.P.R. Discussion Papers.
  20. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
  21. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
  22. Mehmet Sahiner & David G. McMillan & Dimos Kambouroudis, 2023. "Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 723-762, September.
  23. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
  24. Ulrich Heilemann & Susanne Schnorr-Bäcker, 2016. "Could The Start Of The German Recession 2008-2009 Have Been Foreseen? Evidence From Real-Time Data," Working Papers 2016-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
  25. Jonas Dovern & Geoff Kenny, 2020. "Anchoring Inflation Expectations in Unconventional Times: Micro Evidence for the Euro Area," International Journal of Central Banking, International Journal of Central Banking, vol. 16(5), pages 309-347, October.
  26. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.
  27. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
  28. James Yetman, 2017. "The evolution of inflation expectations in Canada and the US," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(3), pages 711-737, August.
  29. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
  30. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
  31. Buchheim, Lukas & Link, Sebastian, 2017. "The Effect of Disaggregate Information on the Expectation Formation of Firms," Discussion Papers in Economics 41214, University of Munich, Department of Economics.
  32. Christopher A. Hollrah & Steven A. Sharpe & Nitish R. Sinha, 2020. "The Power of Narratives in Economic Forecasts," Finance and Economics Discussion Series 2020-001, Board of Governors of the Federal Reserve System (U.S.).
  33. Dovern, Jonas, 2014. "A Multivariate Analysis of Forecast Disagreement: Confronting Models of Disagreement with SPF Data," Working Papers 0571, University of Heidelberg, Department of Economics.
  34. Döpke, Jörg & Fritsche, Ulrich & Waldhof, Gaby, 2017. "Theories, techniques and the formation of German business cycle forecasts. Evidence from a survey among professional forecasters," Working Papers 2, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
  35. Aromí, J. Daniel, 2019. "Medium term growth forecasts: Experts vs. simple models," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1085-1099.
  36. Trabelsi, Emna, 2016. "Central bank transparency and the consensus forecast: What does The Economist poll of forecasters tell us?," Research in International Business and Finance, Elsevier, vol. 38(C), pages 338-359.
  37. Joao Tovar Jalles, 2015. "How Quickly is News Incorporated in Fiscal Forecasts?," Economics Bulletin, AccessEcon, vol. 35(4), pages 2802-2812.
  38. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
  39. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
  40. Vereda, Luciano & Savignon, João & Gouveia da Silva, Tarciso, 2024. "A theory-based method to evaluate the impact of central bank inflation forecasts on private inflation expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1069-1084.
  41. Heilemann Ullrich & Schnorr-Bäcker Susanne, 2017. "Could the start of the German recession 2008–2009 have been foreseen? Evidence from Real-Time Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 237(1), pages 29-62, February.
  42. Zidong An & João Tovar Jalles & Prakash Loungani, 2018. "How well do economists forecast recessions?," International Finance, Wiley Blackwell, vol. 21(2), pages 100-121, June.
  43. Lena Dräger & Michael J. Lamla, 2017. "Imperfect Information and Consumer Inflation Expectations: Evidence from Microdata," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(6), pages 933-968, December.
  44. Yoichi Tsuchiya, 2024. "Conservatism and information rigidity of the European Bank for Reconstruction and Development's growth forecast: Quarter‐century assessment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1399-1421, August.
  45. Jonas Dovern & Christopher Zuber, 2020. "Recessions and Potential Output: Disentangling Measurement Errors, Supply Shocks, and Hysteresis Effects," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(4), pages 1431-1466, October.
  46. Strunz, Franziska & Gödl, Maximilian, 2023. "An Evaluation of Professional Forecasts for the German Economy," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277707, Verein für Socialpolitik / German Economic Association.
  47. Sharpe, Steven A. & Sinha, Nitish R. & Hollrah, Christopher A., 2023. "The power of narrative sentiment in economic forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1097-1121.
  48. Kenny, Geoff & Dovern, Jonas, 2017. "The long-term distribution of expected inflation in the euro area: what has changed since the great recession?," Working Paper Series 1999, European Central Bank.
  49. Yosuke Uno & Saori Naganuma & Naoko Hara, 2018. "New Facts about Firms' Inflation Expectations: Simple Tests for a Sticky Information Model," Bank of Japan Working Paper Series 18-E-14, Bank of Japan.
  50. Monica Jain, 2018. "Sluggish Forecasts," Staff Working Papers 18-39, Bank of Canada.
  51. Jalles, João Tovar & Karibzhanov, Iskander & Loungani, Prakash, 2015. "Cross-country evidence on the quality of private sector fiscal forecasts," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 186-201.
  52. Rülke, Jan-Christoph & Silgoner, Maria & Wörz, Julia, 2016. "Herding behavior of business cycle forecasters," International Journal of Forecasting, Elsevier, vol. 32(1), pages 23-33.
  53. Perico Ortiz, Daniel, 2023. "Inflation news coverage, expectations and risk premium," FAU Discussion Papers in Economics 05/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  54. Vereda, Luciano & Savignon, João & Gouveia da Silva, Tarciso, 2021. "A new method to assess the degree of information rigidity using fixed-event forecasts," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1576-1589.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.