IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i4p1627-1635.html
   My bibliography  Save this article

Evaluating the conditionality of judgmental forecasts

Author

Listed:
  • Berge, Travis J.
  • Chang, Andrew C.
  • Sinha, Nitish R.

Abstract

We propose a framework for evaluating the conditionality of forecasts. The crux of our framework is the observation that a forecast is conditional if revisions to the conditioning factor are incorporated faithfully into the remainder of the forecast. We consider whether the Greenbook, Blue Chip survey and Survey of Professional Forecasters exhibit systematic biases in the manner in which they incorporate interest rate projections into the forecasts of other macroeconomic variables. We do not find strong evidence of systematic biases in the three economic forecasts that we consider, as the interest rate projections in these forecasts appear to be incorporated efficiently into the forecasts of other economic variables.

Suggested Citation

  • Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1627-1635
    DOI: 10.1016/j.ijforecast.2019.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019301451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2019.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dovern, Jonas & Weisser, Johannes, 2011. "Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the G7," International Journal of Forecasting, Elsevier, vol. 27(2), pages 452-465.
    2. Sinclair, Tara M. & Joutz, Fred & Stekler, H.O., 2010. "Can the Fed predict the state of the economy?," Economics Letters, Elsevier, vol. 108(1), pages 28-32, July.
    3. Barbara Rossi & Tatevik Sekhposyan, 2016. "Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
    4. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    5. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
    6. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
    7. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    8. Fred Joutz & Michael P. Clements & Herman O. Stekler, 2007. "An evaluation of the forecasts of the federal reserve: a pooled approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 121-136.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Todd E. Clark & Michael W. McCracken, 2014. "Evaluating Conditional Forecasts from Vector Autoregressions," Working Papers 2014-25, Federal Reserve Bank of St. Louis.
    11. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    12. Peter Tulip, 2009. "Has the Economy Become More Predictable? Changes in Greenbook Forecast Accuracy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1217-1231, September.
    13. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    14. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    15. Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
    16. Reifschneider, David L. & Stockton, David J. & Wilcox, David W., 1997. "Econometric models and the monetary policy process," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 1-37, December.
    17. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.
    18. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    19. David Reifschneider & Peter Tulip, 2017. "Gauging the Uncertainty of the Economic Outlook Using Historical Forecasting Errors: The Federal Reserve's Approach," RBA Research Discussion Papers rdp2017-01, Reserve Bank of Australia.
    20. Julieta Caunedo & Riccardo Dicecio & Ivana Komunjer & Michael T. Owyang, 2020. "Asymmetry, Complementarities, and State Dependence in Federal Reserve Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 205-228, February.
    21. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    22. Faust, Jon & Wright, Jonathan H., 2008. "Efficient forecast tests for conditional policy forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 293-303, October.
    23. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    24. David L. Reifschneider & Peter Tulip, 2007. "Gauging the uncertainty of the economic outlook from historical forecasting errors," Finance and Economics Discussion Series 2007-60, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Travis J. Berge, 2023. "Time-Varying Uncertainty of the Federal Reserve's Output Gap Estimate," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1191-1206, September.
    2. Jochen Güntner, 2022. "Central bank information and private‐sector expectations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1372-1385, November.
    3. Andrew C. Chang & Trace J. Levinson, 2023. "Raiders of the lost high‐frequency forecasts: New data and evidence on the efficiency of the Fed's forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 88-104, January.
    4. Bennett Schmanski & Chiara Scotti & Clara Vega, 2023. "Fed Communication, News, Twitter, and Echo Chambers," Finance and Economics Discussion Series 2023-036, Board of Governors of the Federal Reserve System (U.S.).
    5. Niklas Valentin Lehmann, 2023. "Forecasting skill of a crowd-prediction platform: A comparison of exchange rate forecasts," Papers 2312.09081, arXiv.org.
    6. Engelke, Carola & Heinisch, Katja & Schult, Christoph, 2019. "How forecast accuracy depends on conditioning assumptions," IWH Discussion Papers 18/2019, Halle Institute for Economic Research (IWH).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.
    2. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    3. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    4. Andrew C. Chang & Trace J. Levinson, 2023. "Raiders of the lost high‐frequency forecasts: New data and evidence on the efficiency of the Fed's forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 88-104, January.
    5. Sharpe, Steven A. & Sinha, Nitish R. & Hollrah, Christopher A., 2023. "The power of narrative sentiment in economic forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1097-1121.
    6. Sinclair, Tara M. & Stekler, H.O. & Carnow, Warren, 2015. "Evaluating a vector of the Fed’s forecasts," International Journal of Forecasting, Elsevier, vol. 31(1), pages 157-164.
    7. Carola Conces Binder & Rodrigo Sekkel, 2024. "Central bank forecasting: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 38(2), pages 342-364, April.
    8. Arai, Natsuki, 2014. "Using forecast evaluation to improve the accuracy of the Greenbook forecast," International Journal of Forecasting, Elsevier, vol. 30(1), pages 12-19.
    9. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    10. Strunz, Franziska & Gödl, Maximilian, 2023. "An Evaluation of Professional Forecasts for the German Economy," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277707, Verein für Socialpolitik / German Economic Association.
    11. David L. Reifschneider & Peter Tulip, 2017. "Gauging the Uncertainty of the Economic Outlook Using Historical Forecasting Errors : The Federal Reserve's Approach," Finance and Economics Discussion Series 2017-020, Board of Governors of the Federal Reserve System (U.S.).
    12. Paul Hubert, 2015. "Revisiting the Greenbook’s relative forecasting performance," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 151-179.
    13. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2010. "A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 720-754.
    14. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    15. Wright, Jonathan H., 2019. "Some observations on forecasting and policy," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1186-1192.
    16. Lillian R. Gaeto & Sandeep Mazumder, 2019. "Measuring the Accuracy of Federal Reserve Forecasts," Southern Economic Journal, John Wiley & Sons, vol. 85(3), pages 960-984, January.
    17. Paul Hubert, 2015. "Do Central Bank Forecasts Influence Private Agents? Forecasting Performance versus Signals," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 771-789, June.
    18. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    19. Vereda, Luciano & Savignon, João & Gouveia da Silva, Tarciso, 2021. "A new method to assess the degree of information rigidity using fixed-event forecasts," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1576-1589.

    More about this item

    Keywords

    Forecast efficiency; Macroeconomic forecast; Conditional forecast; Tealbook forecast; Survey of Professional Forecasters; Blue Chip survey;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1627-1635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.