IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04733213.html
   My bibliography  Save this paper

Why Are Inflation Forecasts Sticky? Theory and Application to France and Germany

Author

Listed:
  • Frédérique Bec

    (CREST - Center for Research in Extreme Scale Technologies [Bloomington] - Indiana University [Bloomington] - Indiana University System, THEMA - Théorie économique, modélisation et applications - CNRS - Centre National de la Recherche Scientifique - CY - CY Cergy Paris Université)

  • Raouf Boucekkine

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Caroline Jardet

    (Centre de recherche de la Banque de France - Banque de France)

Abstract

This paper proposes to adapt the model of pricing decisions developed by Alvarez, Lippi, and Paciello (2011) to the decision process of forecasters. The model features both a fixed cost of announcing a revised forecast and a fixed cost of updating the information set and adapting the forecast accordingly. Basically, the former fixed communication costs determine state dependence, which implies that the forecaster changes its forecast only when it is far enough from the optimal forecast, i.e., beyond a fixed threshold; the latter fixed information costs determine time dependence, which implies that the forecaster updates its information set only every other T periods, where T is optimally chosen. We show that survey data of inflation forecast updates as well as the last known monthly inflation rates can be used to estimate the threshold implied by the theoretical model. This threshold estimate is then crucial to uncover the existence of both types of costs as well as an upper bound of the optimal time between two information observations. French and German data suggest that the maximum optimal time to next observation is six months, while the observation cost is at most twice as large as the communication cost.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Frédérique Bec & Raouf Boucekkine & Caroline Jardet, 2023. "Why Are Inflation Forecasts Sticky? Theory and Application to France and Germany," Post-Print hal-04733213, HAL.
  • Handle: RePEc:hal:journl:hal-04733213
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Levy, Daniel & Bergen, Mark & Dutta, Shantanu & Venable, Robert, 1997. "The Magnitude of Menu Costs: Direct Evidence from Large U.S. Supermarket Chains," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 112(3), pages 791-824.
    2. Fernando E. Alvarez & Francesco Lippi & Luigi Paciello, 2011. "Optimal Price Setting With Observation and Menu Costs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(4), pages 1909-1960.
    3. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    4. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    5. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    6. Yuriy Gorodnichenko, 2008. "Endogenous information, menu costs and inflation persistence," NBER Working Papers 14184, National Bureau of Economic Research, Inc.
    7. Woodford, Michael, 2009. "Information-constrained state-dependent pricing," Journal of Monetary Economics, Elsevier, vol. 56(S), pages 100-124.
    8. Mark J. Zbaracki & Mark Ritson & Daniel Levy & Shantanu Dutta & Mark Bergen, 2004. "Managerial and Customer Costs of Price Adjustment: Direct Evidence from Industrial Markets," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 514-533, May.
    9. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    10. Dovern, Jonas, 2013. "When are GDP forecasts updated? Evidence from a large international panel," Economics Letters, Elsevier, vol. 120(3), pages 521-524.
    11. Andrea Stella, 2014. "The Magnitude of Menu Costs: A Structural Estimation," 2014 Meeting Papers 436, Society for Economic Dynamics.
    12. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    13. Olivier Coibion, 2010. "Testing the Sticky Information Phillips Curve," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 87-101, February.
    14. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    15. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    16. Jordi Pons-Novell, 2003. "Strategic bias, herding behaviour and economic forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 67-77.
    17. Bonomo, Marco & Carvalho, Carlos, 2004. "Endogenous Time-Dependent Rules and Inflation Inertia," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(6), pages 1015-1041, December.
    18. John R. Graham, 1999. "Herding among Investment Newsletters: Theory and Evidence," Journal of Finance, American Finance Association, vol. 54(1), pages 237-268, February.
    19. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédérique Bec & Raouf Boucekkine & Caroline Jardet, 2017. "Why are inflation forecasts sticky?," Working Papers 2017-17, Center for Research in Economics and Statistics.
    2. Oleksiy Kryvtsov, 2005. "Information Flows and Aggregate Persistence," Computing in Economics and Finance 2005 416, Society for Computational Economics.
    3. Dovern, Jonas, 2013. "When are GDP forecasts updated? Evidence from a large international panel," Economics Letters, Elsevier, vol. 120(3), pages 521-524.
    4. Yingying Xu & Zhixin Liu & Zichao Jia & Chi-Wei Su, 2017. "Is time-variant information stickiness state-dependent?," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(3), pages 169-187, December.
    5. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    6. de Mendonça, Helder Ferreira & Vereda, Luciano & Araujo, Mateus de Azevedo, 2022. "What type of information calls the attention of forecasters? Evidence from survey data in an emerging market," Journal of International Money and Finance, Elsevier, vol. 129(C).
    7. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.
    8. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    9. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    10. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    11. Kim, Insu & Kim, Young Se, 2019. "Inattentive agents and inflation forecast error dynamics: A Bayesian DSGE approach," Journal of Macroeconomics, Elsevier, vol. 62(C).
    12. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    13. Edward S. Knotek Ii, 2010. "A Tale of Two Rigidities: Sticky Prices in a Sticky-Information Environment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1543-1564, December.
    14. Paul Hubert & Harun Mirza, 2019. "The role of forward‐ and backward‐looking information for inflation expectations formation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(8), pages 733-748, December.
    15. Jonas Dovern & Matthias Hartmann, 2017. "Forecast performance, disagreement, and heterogeneous signal-to-noise ratios," Empirical Economics, Springer, vol. 53(1), pages 63-77, August.
    16. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
    17. Demery, David, 2012. "State-dependent pricing and the non-neutrality of money," Journal of Macroeconomics, Elsevier, vol. 34(4), pages 933-944.
    18. George-Marios Angeletos & Chen Lian, 2016. "Incomplete Information in Macroeconomics: Accommodating Frictions in Coordination," NBER Working Papers 22297, National Bureau of Economic Research, Inc.
    19. Mankiw, N. Gregory & Reis, Ricardo, 2010. "Imperfect Information and Aggregate Supply," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 5, pages 183-229, Elsevier.
    20. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04733213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.