IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v27y2011i2p496-511.html
   My bibliography  Save this item

Forecasting national activity using lots of international predictors: An application to New Zealand

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
  2. Eickmeier, Sandra & Ng, Tim, 2015. "How do US credit supply shocks propagate internationally? A GVAR approach," European Economic Review, Elsevier, vol. 74(C), pages 128-145.
  3. Petar Sorić & Blanka Škrabić Perić & Marina Matošec, 2022. "Breaking new grounds: a fresh insight into the leading properties of business and consumer survey indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4511-4535, December.
  4. Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015. "Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
  5. Marijn A Bolhuis & Judd N L Cramer & Lawrence H Summers, 2022. "The Coming Rise in Residential Inflation [The repeat rent index]," Review of Finance, European Finance Association, vol. 26(5), pages 1051-1072.
  6. Stamer, Vincent, 2022. "Thinking Outside the Container: A Sparse Partial Least Squares Approach to Forecasting Trade Flows," VfS Annual Conference 2022 (Basel): Big Data in Economics 264096, Verein für Socialpolitik / German Economic Association.
  7. Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
  8. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
  9. Halberstadt, Arne & Stapf, Jelena, 2012. "An affine multifactor model with macro factors for the German term structure: Changing results during the recent crises," Discussion Papers 25/2012, Deutsche Bundesbank.
  10. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
  11. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
  12. Bušs, Ginters, 2009. "Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach," MPRA Paper 16684, University Library of Munich, Germany.
  13. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
  14. Cubadda, Gianluca & Guardabascio, Barbara, 2012. "A medium-N approach to macroeconomic forecasting," Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
  15. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
  16. Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019. "Macroeconomic forecasting for Australia using a large number of predictors," International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
  17. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
  18. Petar Sorić, 2020. "“Normal†growth of the Chinese economy: new metrics based on consumer confidence data," Economics Bulletin, AccessEcon, vol. 40(2), pages 1740-1746.
  19. Jack Fosten & Shaoni Nandi, 2023. "Nowcasting from cross‐sectionally dependent panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 898-919, September.
  20. Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
  21. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
  22. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
  23. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
  24. Michael Callaghan & Enzo Cassino & Tugrul Vehbi & Benjamin Wong, 2019. "Opening the toolbox: how does the Reserve Bank analyse the world?," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 82, pages 1-14, April.
  25. Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
  26. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
  27. Jack Fosten, 2017. "Model selection with estimated factors and idiosyncratic components," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1087-1106, September.
  28. Duo Qin & Sophie van Huellen & Qing Chao Wang & Thanos Moraitis, 2022. "Algorithmic Modelling of Financial Conditions for Macro Predictive Purposes: Pilot Application to USA Data," Econometrics, MDPI, vol. 10(2), pages 1-22, April.
  29. Čižmešija Mirjana & Lukač Zrinka & Novoselec Tomislav, 2019. "Nonlinear optimisation approach to proposing novel Croatian Industrial Confidence Indicator," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 5(2), pages 17-26, December.
  30. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
  31. Duo Qin & Qingchao Wang, 2016. "Predictive Macro-Impacts of PLS-based Financial Conditions Indices: An Application to the USA," Working Papers 201, Department of Economics, SOAS University of London, UK.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.