IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v39y2006i3p330-355.html
   My bibliography  Save this item

Asset and liability management under a continuous-time mean-variance optimization framework

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
  2. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
  3. Yan, Tingjin & Han, Jinhui & Ma, Guiyuan & Siu, Chi Chung, 2023. "Dynamic asset-liability management with frictions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 57-83.
  4. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
  5. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
  6. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.
  7. Pun, Chi Seng, 2018. "Time-consistent mean-variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 75(C), pages 281-292.
  8. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
  9. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
  10. Xie, Shuxiang, 2009. "Continuous-time mean-variance portfolio selection with liability and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 148-155, August.
  11. Lorenz M. Roebers & Aras Selvi & Juan C. Vera, 2018. "Using Column Generation to Solve Extensions to the Markowitz Model," Papers 1812.00093, arXiv.org, revised Jun 2019.
  12. Jun Yu, 2014. "Optimal Asset-Liability Management for an Insurer Under Markov Regime Switching Jump-Diffusion Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 317-330, November.
  13. Qian Zhao & Jiaqin Wei & Rongming Wang, 2013. "Mean-Variance Asset-Liability Management with State-Dependent Risk Aversion," Papers 1304.7882, arXiv.org.
  14. Yao, Haixiang & Lai, Yongzeng & Li, Yong, 2013. "Continuous-time mean–variance asset–liability management with endogenous liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 6-17.
  15. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
  16. Chang, Hao, 2015. "Dynamic mean–variance portfolio selection with liability and stochastic interest rate," Economic Modelling, Elsevier, vol. 51(C), pages 172-182.
  17. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
  18. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Non-homogeneous stochastic LQ control with regime switching and random coefficients," Papers 2201.01433, arXiv.org, revised Jul 2023.
  19. Jian Pan & Qingxian Xiao, 2017. "Optimal mean–variance asset-liability management with stochastic interest rates and inflation risks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 491-519, June.
  20. Huang, Hong-Chih & Lee, Yung-Tsung, 2010. "Optimal asset allocation for a general portfolio of life insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 271-280, April.
  21. Jarraya, Bilel & Bouri, Abdelfettah, 2013. "Multiobjective optimization for the asset allocation of European nonlife insurance companies," MPRA Paper 53697, University Library of Munich, Germany, revised 2013.
  22. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2008. "Mean-variance portfolio and contribution selection in stochastic pension funding," European Journal of Operational Research, Elsevier, vol. 187(1), pages 120-137, May.
  23. Georgios I. Papayiannis, 2023. "A Framework for Treating Model Uncertainty in the Asset Liability Management Problem," Papers 2310.11987, arXiv.org.
  24. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
  25. Spyridon D Vrontos & Ioannis D Vrontos & Loukia Meligkotsidou, 2013. "Asset-liability management for pension funds in a time-varying volatility environment," Journal of Asset Management, Palgrave Macmillan, vol. 14(5), pages 306-333, October.
  26. Wei, J. & Wong, K.C. & Yam, S.C.P. & Yung, S.P., 2013. "Markowitz’s mean–variance asset–liability management with regime switching: A time-consistent approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 281-291.
  27. Wang, J. & Forsyth, P.A., 2010. "Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 207-230, February.
  28. Huang, Hong-Chih & Lee, Yung-Tsung, 2020. "A study of the differences among representative investment strategies," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 131-149.
  29. Xiangyu Cui & Xun Li & Duan Li, 2013. "Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection," Papers 1303.1064, arXiv.org.
  30. Lucian Gaban & Ionut - Marius Rus & Alin Fetita & Liviu Bechis, 2017. "Assets And Liabilities Management During The Crisis - A Study On Banks In Romania," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 529-537, July.
  31. Wang, Ning & Zhang, Yumo, 2023. "Robust optimal asset-liability management with mispricing and stochastic factor market dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 251-273.
  32. Lu Yang & Chengke Zhang & Huainian Zhu, 2022. "Robust Stochastic Stackelberg Differential Reinsurance and Investment Games for an Insurer and a Reinsurer with Delay," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 361-384, March.
  33. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
  34. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
  35. Jie Xiong & Zuo quan Xu & Jiayu Zheng, 2019. "Mean-variance portfolio selection under partial information with drift uncertainty," Papers 1901.03030, arXiv.org, revised Oct 2020.
  36. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
  37. Yu, Tzu-Yi & Tsai, Chenghsien & Huang, Hsiao-Tzu, 2010. "Applying simulation optimization to the asset allocation of a property-casualty insurer," European Journal of Operational Research, Elsevier, vol. 207(1), pages 499-507, November.
  38. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
  39. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
  40. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.
  41. Esfandi, Elaheh & Mousavi, Mir Hossein & Moshrefi, Rassam & Farhang-Moghaddam, Babak, 2020. "Insurer Optimal Asset Allocation in a Small and Closed Economy: The Case of Iran’s Social Security Organization," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 15(4), pages 445-461, October.
  42. Ryle S. Perera, 2020. "Provisions for bank deposit withdrawals and portfolio selection," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-32, March.
  43. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
  44. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
  45. Liang, Zongxia & Zhao, Xiaoyang, 2016. "Optimal mean–variance efficiency of a family with life insurance under inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 164-178.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.