IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v35y2004i3p581-594.html
   My bibliography  Save this item

A comonotonic image of independence for additive risk measures

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. J. Beirlant & G. Claeskens & C. Croux & H. Degryse & H. Dewachter & G. Dhaene & J. Dhaene & I. Gijbels & M. Goovaerts & M. Hubert & F. Roodhooft & W. Schouten & M. Willekens, 2005. "Managing Uncertainty: Financial, Actuarial and Statistical Modeling," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(1), pages 23-48.
  2. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
  3. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
  4. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
  5. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
  6. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
  7. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
  8. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
  9. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
  10. Corradini, M. & Gheno, A., 2009. "Incomplete financial markets and contingent claim pricing in a dual expected utility theory framework," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 180-187, October.
  11. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2015. "Expected utility and catastrophic consumption risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 306-312.
  12. Jianming Xia, 2021. "Optimal Investment with Risk Controlled by Weighted Entropic Risk Measures," Papers 2112.02284, arXiv.org.
  13. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "A note on additive risk measures in rank-dependent utility," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 187-189, October.
  14. Babacar Seck & Robert J. Elliott, 2021. "Regime Switching Entropic Risk Measures on Crude Oil Pricing," Papers 2112.13041, arXiv.org.
  15. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
  16. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
  17. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
  18. Bhattacharyya, Dhrubasish & Khan, Ruhul Ali & Mitra, Murari, 2021. "Tests for Laplace order dominance with applications to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 163-173.
  19. He, Kun & Hu, Mingshang & Chen, Zengjing, 2009. "The relationship between risk measures and choquet expectations in the framework of g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 508-512, February.
  20. Gzyl, Henryk & Mayoral, Silvia, 2008. "Determination of risk pricing measures from market prices of risk," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 437-443, December.
  21. Wu, Xianyi & Zhou, Xian, 2006. "A new characterization of distortion premiums via countable additivity for comonotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 324-334, April.
  22. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
  23. Ariyafar, Saeed & Tata, Mahbanoo & Rezapour, Mohsen & Madadi, Mohsen, 2020. "Comparison of aggregation, minimum and maximum of two risky portfolios with dependent claims," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
  24. Samuel Solgon Santos & Marlon Ruoso Moresco & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2023. "A note on the induction of comonotonic additive risk measures from acceptance sets," Papers 2307.04647, arXiv.org, revised Jul 2023.
  25. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
  26. Santos, Samuel S. & Moresco, Marlon R. & Righi, Marcelo B. & Horta, Eduardo, 2024. "A note on the induction of comonotonic additive risk measures from acceptance sets," Statistics & Probability Letters, Elsevier, vol. 208(C).
  27. Xiaosheng Mu & Luciano Pomatto & Philipp Strack & Omer Tamuz, 2021. "Monotone Additive Statistics," Working Papers 2021-36, Princeton University. Economics Department..
  28. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.
  29. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
  30. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
  31. Badescu, Alex & Elliott, Robert J. & Siu, Tak Kuen, 2009. "Esscher transforms and consumption-based models," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 337-347, December.
  32. Paola Ferretti & Antonella Campana, 2011. "XL reinsurance with reinstatements and initial premium feasibility in exchangeability hypothesis," Working Papers 2011_14, Department of Economics, University of Venice "Ca' Foscari".
  33. Kijima, Masaaki & Muromachi, Yukio, 2008. "An extension of the Wang transform derived from Bühlmann's economic premium principle for insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 887-896, June.
  34. Lau, John W. & Siu, Tak Kuen, 2008. "On option pricing under a completely random measure via a generalized Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 99-107, August.
  35. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
  36. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Pricing insurance contracts under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 159-166.
  37. Labuschagne, Coenraad C.A. & Offwood, Theresa M., 2010. "A note on the connection between the Esscher-Girsanov transform and the Wang transform," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 385-390, December.
  38. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
  39. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
  40. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
  41. Masako Ikefuji & Roger Laeven & Jan Magnus & Chris Muris, 2014. "Expected Utility and Catastrophic Risk," Tinbergen Institute Discussion Papers 14-133/III, Tinbergen Institute.
  42. Xiaosheng Mu & Luciano Pomatto & Philipp Strack & Omer Tamuz, 2021. "Monotone additive statistics," Papers 2102.00618, arXiv.org, revised Apr 2024.
  43. Acciaio, Beatrice & Svindland, Gregor, 2009. "Optimal risk sharing with different reference probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 426-433, June.
  44. Daniela Escobar & Georg Pflug, 2018. "The distortion principle for insurance pricing: properties, identification and robustness," Papers 1809.06592, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.