IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v178y2020ics0047259x19304841.html
   My bibliography  Save this article

Comparison of aggregation, minimum and maximum of two risky portfolios with dependent claims

Author

Listed:
  • Ariyafar, Saeed
  • Tata, Mahbanoo
  • Rezapour, Mohsen
  • Madadi, Mohsen

Abstract

The comparison of two risky portfolios has always been of interest in insurance and finance. Classically, it is often assumed that the portfolio claims are independent, but in practice, this assumption is not usually true and we need to study portfolios with dependent claims. In this paper, we consider two risky portfolios with dependent claims whose dependencies are modeled using Archimedean copulas and compare the aggregation and minimum of these portfolios with respect to the Laplace transform order. Moreover, we compare the maxima of two interdependent portfolios by the usual stochastic order.

Suggested Citation

  • Ariyafar, Saeed & Tata, Mahbanoo & Rezapour, Mohsen & Madadi, Mohsen, 2020. "Comparison of aggregation, minimum and maximum of two risky portfolios with dependent claims," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:jmvana:v:178:y:2020:i:c:s0047259x19304841
    DOI: 10.1016/j.jmva.2020.104620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19304841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
    2. Zhang, Yiying & Zhao, Peng, 2015. "Comparisons on aggregate risks from two sets of heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 124-135.
    3. Sordo, M.A. & Bello, A.J. & Suárez-Llorens, A., 2018. "Stochastic orders and co-risk measures under positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 105-113.
    4. Shaked, Moshe, 2007. "Stochastic comparisons of multivariate random sums in the Laplace transform order, with applications," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1339-1344, July.
    5. Zhang, Yiying & Li, Xiaohu & Cheung, Ka Chun, 2018. "On Heterogeneity In The Individual Model With Both Dependent Claim Occurrences And Severities," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 817-839, May.
    6. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    7. Denuit, Michel, 2001. "Laplace transform ordering of actuarial quantities," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 83-102, August.
    8. M. Mesfioui & M. Kayid & S. Izadkhah, 2017. "Stochastic comparisons of order statistics from heterogeneous random variables with Archimedean copula," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 749-766, November.
    9. Li, Xiaohu & Fang, Rui, 2015. "Ordering properties of order statistics from random variables of Archimedean copulas with applications," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 304-320.
    10. Chen Li & Rui Fang & Xiaohu Li, 2016. "Stochastic somparisons of order statistics from scaled and interdependent random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 553-578, July.
    11. Rezapour, Mohsen & Alamatsaz, Mohammad Hossein, 2014. "Stochastic comparison of lifetimes of two (n−k+1)-out-of-n systems with heterogeneous dependent components," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 240-251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mesfioui Mhamed & Trufin Julien, 2021. "Dispersive order comparisons on extreme order statistics from homogeneous dependent random vectors," Dependence Modeling, De Gruyter, vol. 9(1), pages 385-393, January.
    2. Li, Chen & Li, Xiaohu, 2019. "Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 104-111.
    3. Sangita Das & Suchandan Kayal, 2020. "Ordering extremes of exponentiated location-scale models with dependent and heterogeneous random samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(8), pages 869-893, November.
    4. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.
    5. Barmalzan, Ghobad & Akrami, Abbas & Balakrishnan, Narayanaswamy, 2020. "Stochastic comparisons of the smallest and largest claim amounts with location-scale claim severities," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 341-352.
    6. Junrui Wang & Rongfang Yan & Bin Lu, 2020. "Stochastic Comparisons of Parallel and Series Systems with Type II Half Logistic-Resilience Scale Components," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    7. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    8. Bhattacharyya, Dhrubasish & Khan, Ruhul Ali & Mitra, Murari, 2021. "Tests for Laplace order dominance with applications to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 163-173.
    9. Kijima, Masaaki & Muromachi, Yukio, 2008. "An extension of the Wang transform derived from Bühlmann's economic premium principle for insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 887-896, June.
    10. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    11. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "A note on additive risk measures in rank-dependent utility," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 187-189, October.
    12. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    13. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    14. Li, Chen & Li, Xiaohu, 2019. "Preservation of WSAI under default transforms and its application in allocating assets with dependent realizable returns," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 84-91.
    15. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    16. Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.
    17. Corradini, M. & Gheno, A., 2009. "Incomplete financial markets and contingent claim pricing in a dual expected utility theory framework," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 180-187, October.
    18. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
    19. Gzyl, Henryk & Mayoral, Silvia, 2008. "Determination of risk pricing measures from market prices of risk," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 437-443, December.
    20. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:178:y:2020:i:c:s0047259x19304841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.