IDEAS home Printed from https://ideas.repec.org/r/eee/infome/v13y2019i1p407-418.html
   My bibliography  Save this item

Predicting the citations of scholarly paper

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kehan Wang & Wenxuan Shi & Junsong Bai & Xiaoping Zhao & Liying Zhang, 2021. "Prediction and application of article potential citations based on nonlinear citation-forecasting combined model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6533-6550, August.
  2. Delbianco, Fernando & Fioriti, Andrés & Hernandez-Chanto, Allan & Tohmé, Fernando, 2020. "A Markov-switching approach to the study of citations in academic journals," Journal of Informetrics, Elsevier, vol. 14(4).
  3. Chompunuch Saravudecha & Duangruthai Na Thungfai & Chananthida Phasom & Sodsri Gunta-in & Aorrakanya Metha & Peangkobfah Punyaphet & Tippawan Sookruay & Wannachai Sakuludomkan & Nut Koonrungsesomboon, 2023. "Hybrid Gold Open Access Citation Advantage in Clinical Medicine: Analysis of Hybrid Journals in the Web of Science," Publications, MDPI, vol. 11(2), pages 1-9, March.
  4. Tehmina Amjad & Nafeesa Shahid & Ali Daud & Asma Khatoon, 2022. "Citation burst prediction in a bibliometric network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2773-2790, May.
  5. Lu, Wei & Ren, Yan & Huang, Yong & Bu, Yi & Zhang, Yuehan, 2021. "Scientific collaboration and career stages: An ego-centric perspective," Journal of Informetrics, Elsevier, vol. 15(4).
  6. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
  7. Carlo Galli & Stefano Guizzardi, 2021. "The Effect of Article Characteristics on Citation Number in a Diachronic Dataset of the Biomedical Literature on Chronic Inflammation: An Analysis by Ensemble Machines," Publications, MDPI, vol. 9(2), pages 1-11, April.
  8. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
  9. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
  10. Sato, Ryoma & Yamada, Makoto & Kashima, Hisashi, 2022. "Poincare: Recommending Publication Venues via Treatment Effect Estimation," Journal of Informetrics, Elsevier, vol. 16(2).
  11. Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
  12. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
  13. Chanwoo Jeong & Sion Jang & Eunjeong Park & Sungchul Choi, 2020. "A context-aware citation recommendation model with BERT and graph convolutional networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1907-1922, September.
  14. Hu, Ya-Han & Tai, Chun-Tien & Liu, Kang Ernest & Cai, Cheng-Fang, 2020. "Identification of highly-cited papers using topic-model-based and bibliometric features: the consideration of keyword popularity," Journal of Informetrics, Elsevier, vol. 14(1).
  15. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
  16. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
  17. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
  18. Saarela, Mirka & Kärkkäinen, Tommi, 2020. "Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator," Journal of Informetrics, Elsevier, vol. 14(2).
  19. Wumei Du & Zheng Xie & Yiqin Lv, 2021. "Predicting publication productivity for authors: Shallow or deep architecture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5855-5879, July.
  20. Xiaomei Bai & Fuli Zhang & Jinzhou Li & Zhong Xu & Zeeshan Patoli & Ivan Lee, 2021. "Quantifying scientific collaboration impact by exploiting collaboration-citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7993-8008, September.
  21. Wang, Xing & Zhang, Zhihui, 2020. "Improving the reliability of short-term citation impact indicators by taking into account the correlation between short- and long-term citation impact," Journal of Informetrics, Elsevier, vol. 14(2).
  22. Gian Maria Campedelli, 2021. "Where are we? Using Scopus to map the literature at the intersection between artificial intelligence and research on crime," Journal of Computational Social Science, Springer, vol. 4(2), pages 503-530, November.
  23. Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
  24. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
  25. Fang Zhang & Shengli Wu, 2024. "Predicting citation impact of academic papers across research areas using multiple models and early citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4137-4166, July.
  26. Jiang, Zhuoren & Lin, Tianqianjin & Huang, Cui, 2023. "Deep representation learning of scientific paper reveals its potential scholarly impact," Journal of Informetrics, Elsevier, vol. 17(1).
  27. Chowdhury, K.P., 2021. "Functional analysis of generalized linear models under non-linear constraints with applications to identifying highly-cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
  28. Guy Assaker & Wassim Shahin, 2022. "What Drives Faculty Publication Citations in the Business Field? Empirical Results from an AACSB Middle Eastern Institution," Publications, MDPI, vol. 10(4), pages 1-29, November.
  29. Klemiński, Rajmund & Kazienko, Przemyslaw & Kajdanowicz, Tomasz, 2021. "Where should I publish? Heterogeneous, networks-based prediction of paper’s citation success," Journal of Informetrics, Elsevier, vol. 15(3).
  30. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
  31. Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
  32. Shaibu Mohammed & Anthony Morgan & Emmanuel Nyantakyi, 2020. "On the influence of uncited publications on a researcher’s h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1791-1799, March.
  33. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
  34. Yi Zhang & Fen Zhao & Jianguo Lu, 2019. "P2V: large-scale academic paper embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 399-432, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.