IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v91y2015icp925-939.html
   My bibliography  Save this item

Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
  2. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
  3. Guillermo Valencia Ochoa & Jhan Piero Rojas & Jorge Duarte Forero, 2020. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine," Energies, MDPI, vol. 13(1), pages 1-18, January.
  4. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
  5. Zecheng Zhao & Zhiwen Wang & Hu Wang & Hongwei Zhu & Wei Xiong, 2023. "Conventional and Advanced Exergy Analyses of Industrial Pneumatic Systems," Energies, MDPI, vol. 16(16), pages 1-23, August.
  6. Liu, Chenglin & Zhao, Lei & Zhu, Shun & Shen, Yuefeng & Yu, Jianhua & Yang, Qingchun, 2023. "Advanced exergy analysis and optimization of a coal to ethylene glycol (CtEG) process," Energy, Elsevier, vol. 282(C).
  7. Özen, Dilek Nur & Koçak, Betül, 2022. "Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas," Energy, Elsevier, vol. 248(C).
  8. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
  9. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
  10. Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
  11. Zonouz, Masood Jalali & Mehrpooya, Mehdi, 2017. "Parametric study of a hybrid one column air separation unit (ASU) and CO2 power cycle based on advanced exergy cost analysis results," Energy, Elsevier, vol. 140(P1), pages 261-275.
  12. Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
  13. Fallah, M. & Mahmoudi, S.M.S. & Yari, M., 2017. "Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell," Energy, Elsevier, vol. 141(C), pages 1097-1112.
  14. Yuan Zhao & Bowen Du & Shunyi Chen & Jun Zhao & Zhipeng Guo & Lingbao Wang, 2022. "Energy and Conventional and Advanced Exergy Analyses of Low-Temperature Geothermal Binary-Flashing Cycle Using Zeotropic Mixtures," Energies, MDPI, vol. 15(10), pages 1-18, May.
  15. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
  16. Aghaei, Ali Tavakkol & Saray, Rahim Khoshbakhti, 2021. "Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: A case study in the dairy industry," Energy, Elsevier, vol. 229(C).
  17. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
  18. Caglayan, Hasan & Caliskan, Hakan, 2021. "Advanced exergy analyses and optimization of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
  19. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
  20. Zare, A. Darabadi & Saray, R. Khoshbakhti & Mirmasoumi, S. & Bahlouli, K., 2019. "Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle," Energy, Elsevier, vol. 181(C), pages 635-644.
  21. Anvari, Simin & Szlęk, Andrzej & Arteconi, Alessia & Desideri, Umberto & Rosen, Marc A., 2023. "Comparative study of steam injection modes for a proposed biomass-driven cogeneration cycle: Performance improvement and CO2 emission reduction," Applied Energy, Elsevier, vol. 329(C).
  22. Uysal, Cuneyt & Keçebaş, Ali, 2021. "Advanced exergoeconomic analysis with using modified productive structure analysis: An application for a real gas turbine cycle," Energy, Elsevier, vol. 223(C).
  23. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
  24. Wang, Yinglong & Chen, Zhengrun & Shen, Yuanyuan & Ma, Zhaoyuan & Li, Huiyuan & Liu, Xiaobin & Zhu, Zhaoyou & Qi, Jianguang & Cui, Peizhe & Wang, Lei & Ma, Yixin & Xu, Dongmei, 2021. "Advanced exergy and exergoeconomic analysis of an integrated system combining CO2 capture-storage and waste heat utilization processes," Energy, Elsevier, vol. 219(C).
  25. Caliskan, Hakan & Açıkkalp, Emin & Rostamnejad Takleh, H. & Zare, V., 2023. "Advanced, extended and combined extended-advanced exergy analyses of a novel geothermal powered combined cooling, heating and power (CCHP) system," Renewable Energy, Elsevier, vol. 206(C), pages 125-134.
  26. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.